과제정보
본 연구는 연구재단 "기본연구지원사업(NRF-2016R1D1A1B01012377)"을 통해 수행되었음.
참고문헌
- D. J. M. Van Beek, A. J. H. Spiering, G. W. M. Peters, K. te Nijenhuis, and R. P. Sijbesma, "Unidirectional Dimerization and Stacking of Ureidopyrimidinone End Groups in Polycaprolactone Supramolecular Polymers", Macromolecules, 2007, 40, 8464-8475. https://doi.org/10.1021/ma0712394
- J. Hentschel, A. M. Kushner, J. Ziller, and Z. Guan, "Self-Healing Supramolecular Block Copolymers", Angewandte Chemi, 2012, 124, 10713-10717. https://doi.org/10.1002/ange.201204840
- J. H. Yang, J. Lee, S. Lim, S. Jung, S. H. Jang, S. Jang, S. Y. Kwak, S. Ahn, Y. C. Jung, R. D. Priestley, and J. W. Chung, "Understanding and Controlling the Self-healing Behavior of 2-ureido-4[1H]-pyrimidinone-functionalized Clustery and Dendritic Dual Dynamic Supramolecular Network", Polymer, 2019, 172, 13-26. https://doi.org/10.1016/j.polymer.2019.03.027
- D. W. R. Balkenende, C. A. Monnier, G. L. Fiore, and C. Weder, "Optically Responsive Supramolecular Polymer Glasses", Nat. Commun., 2016, 7, 10995. https://doi.org/10.1038/ncomms10995
- W. Lee, S. Y. Kwak, and J. W. Chung, "Arm-length-dependent Phase Transformation and Dual Dynamic Healing Behavior of Supramolecular Networks Consisting of Ureidopyrimidinone-end-functionalized Semi-crystalline Star Polymer", Eur. Polym. J., 2020, 138, 109976. https://doi.org/10.1016/j.eurpolymj.2020.109976
- S. Yoshida, H. Ejima, and N. Yoshie, "Tough Elastomers with Superior Self-Recoverability Induced by Bioinspired Multiphase Design", Adv. Funct. Mater., 2017, 27, 1701670. https://doi.org/10.1002/adfm.201701670
- M. Wei, M. Zhan, D. Yu, H. Xie, M. He, K. Yang, and Y. Wang, "Novel Poly(tetramethylene ether)glycol and Poly(ε-caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity", ACS Appl. Mater. Interfaces, 2015, 7, 2585-2596. https://doi.org/10.1021/am507575z
- M. V. Biyani, E. J. Foster, and C. Weder, "Light-Healable Supramolecular Nanocomposites Based on Modified Cellulose Nanocrystals", ACS Macro Lett., 2013, 2, 236-240. https://doi.org/10.1021/mz400059w
- H. Yan, Q. Jiang, J. Wang, S. Cao, Y. Qiu, H. Wang, Y. Liao, and X. Xie, "A Triple-stimuli Responsive Supramolecular Hydrogel Based on Methoxy-azobenzene-grafted Poly(acrylic acid) and β-cyclodextrin Dimer", Polymer, 2021, 221, 123617. https://doi.org/10.1016/j.polymer.2021.123617
- J. Sautaux, L. Montero de Espinosa, S. Balog, and Christoph Weder, "Multistimuli, Multiresponsive Fully Supramolecular Orthogonally Bound Polymer Networks", Macromolecules, 2018, 51, 5867-5874. https://doi.org/10.1021/acs.macromol.8b00555
- X. Wang, J. Wang, Y. Yang, F. Yang, and D. Wu, "Fabrication of Multi-stimuli Responsive Supramolecular Hydrogels Based on Host-guest Inclusion Complexation of a Tadpole-shaped Cyclodextrin Derivative with the Azobenzene Dimer", Polym. Chem., 2017, 8, 3901-3909. https://doi.org/10.1039/C7PY00698E
- G. K. Bains, S. H. Kim, E. J. Sorin, and V. Narayanaswami, "The Extent of Pyrene Excimer Fluorescence Emission Is a Reflector of Distance and Flexibility: Analysis of the Segment Linking the LDL Receptor-Binding and Tetramerization Domains of Apolipoprotein E3", Biochemistry, 2012, 51, 6207-6219. https://doi.org/10.1021/bi3005285
- J. Duhamel, "New Insights in the Study of Pyrene Excimer Fluorescence to Characterize Macromolecules and Their Supramolecular Assemblies in Solution", Langmuir, 2012, 28, 6527-6538. https://doi.org/10.1021/la2047646
- D. Sahoo, V. Narayanaswami, C. M. Kay, and R. O. Ryan, "Pyrene Excimer Fluorescence: A Spatially Sensitive Probe To Monitor Lipid-Induced Helical Rearrangement of Apolipophorin III", Biochemistry, 2000, 39, 6594-6601. https://doi.org/10.1021/bi992609m
- S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, and S. J. Rowan, "A Healable Supramolecular Polymer Blend Based on Aromatic π-π Stacking and Hydrogen-Bonding Interactions", J. Am. Chem. Soc., 2010, 132, 12051-12058. https://doi.org/10.1021/ja104446r
- H. Ma, F. Wang, W. Li, Y. Ma, X. Yao, D. Lu, Y. Yang, Z. Zhang, and Z. Lei, "Supramolecular Assemblies of Azobenzene-β-cyclodextrin Dimers and Azobenzene Modified Polycaprolactones", J. Phys. Org. Chem., 2014, 27, 722-728. https://doi.org/10.1002/poc.3331
- B. Neises and W. Steglich, "Simple Method for the Esterification of Carboxylic", Angewandte Chemie, 1978, 17, 522-524. https://doi.org/10.1002/anie.197805221
- C. Bonneaud, M. Decostanzi, J. Burgess, G. Trusiano, T. Burgess, R. Bongiovanni, C. Joly-Duhamel, and C. M. Friesen, "Synthesis of α,β-unsaturated Esters of Perfluoropolyalkylethers (PFPAEs) Based on Hexafluoropropylene Oxide Units for Photopolymerization", RSC Adv., 2018, 8, 32664-32671. https://doi.org/10.1039/c8ra06354k
- E. Ostmark, L. Macakova, T. Auletta, M. Malkoch, E. Malmstro, and E. Blomberg, "Dendritic Structures Based on Bis(hydroxymethyl)propionic Acid as Platforms for Surface Reactions", Langmuir, 2005, 21, 4512-4519. https://doi.org/10.1021/la047077b
- S. H. Jang, J. Lee, J. W. Chung, and S. H. Kim, "Effects of Macromonomeric Length of Ureidopyrimidinone-Induced Supramolecular Polymers on Their Crystalline Structure and Mechanical/Rheological Properties", Macromol. Res., 2019, 27, 729-737. https://doi.org/10.1007/s13233-019-7149-6
- T. F. A. de Greef, G. Ercolani, G. Ligthart, E. W. Meijer, and R. P. Sijbesma, "Influence of Selectivity on the Supramolecular Polymerization of AB-Type Polymers Capable of Both A.A and A.B Interactions", J. Am. Chem. Soc., 2008, 130, 13755-13764. https://doi.org/10.1021/ja8046409