DOI QR코드

DOI QR Code

Synthesis and Characterization of Fluorescent Supramolecular Polymers Bearing Pyrene Pendents with Different Spacer Length

스페이서 길이가 다른 파이렌 펜던트를 지닌 형광 초분자형 고분자의 합성과 특성 분석

  • Kim, Hee Jung (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Yoo, Young Jun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Noh, Kyung Tak (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Chung, Jae Woo (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 김희정 (숭실대학교 유기신소재.파이버공학과) ;
  • 유영준 (숭실대학교 유기신소재.파이버공학과) ;
  • 노경탁 (숭실대학교 유기신소재.파이버공학과) ;
  • 정재우 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2022.05.30
  • Accepted : 2022.06.25
  • Published : 2022.06.30

Abstract

We synthesize ureido-pyrimidinone (UPy)-based semicrystalline supramolecular polymers bearing pyrene pendants (Py-UPCL) and investigate the pyrene spacer length effect on their supramolecular structure, optical, thermal, and mechanical properties. Nuclear magnetic resonance (NMR) spectroscopy, capillary viscometry, fluorescence spectroscopy, and differential scanning calorimetry (DSC) show that the supramolecular chain extension and crosslinking, i.e., the formation of supramolecular network structure, occurs in Py-UPCL by the UPy quadruple hydrogen bonding and the pyrene π-π interaction. In particular, the specific viscosities of Py-1-UPCL with shorter pyrene spacer is higher than Py-4-UPCL with longer pyrene spacer, and the excimer to monomer intensity ratio (IE/IM) of Py-1-UPCL (74.9) is higher than that of Py-4-UPCL (14.21), which indicates that shorter pyrene spacer length stronger formation of the supramolecular network structure. In addition, Py-4-UPCL (37.7 J g-1) has lower PCL melting enthalpy than Py-1-UPCL (53.5 J g-1) because of a bulky pyrene topology caused by longer spacer length. As a result, Py-4-UPCL exhibits two times lower strength and seven times smaller strain compared to Py-1-UPCL.

Keywords

Acknowledgement

본 연구는 연구재단 "기본연구지원사업(NRF-2016R1D1A1B01012377)"을 통해 수행되었음.

References

  1. D. J. M. Van Beek, A. J. H. Spiering, G. W. M. Peters, K. te Nijenhuis, and R. P. Sijbesma, "Unidirectional Dimerization and Stacking of Ureidopyrimidinone End Groups in Polycaprolactone Supramolecular Polymers", Macromolecules, 2007, 40, 8464-8475. https://doi.org/10.1021/ma0712394
  2. J. Hentschel, A. M. Kushner, J. Ziller, and Z. Guan, "Self-Healing Supramolecular Block Copolymers", Angewandte Chemi, 2012, 124, 10713-10717. https://doi.org/10.1002/ange.201204840
  3. J. H. Yang, J. Lee, S. Lim, S. Jung, S. H. Jang, S. Jang, S. Y. Kwak, S. Ahn, Y. C. Jung, R. D. Priestley, and J. W. Chung, "Understanding and Controlling the Self-healing Behavior of 2-ureido-4[1H]-pyrimidinone-functionalized Clustery and Dendritic Dual Dynamic Supramolecular Network", Polymer, 2019, 172, 13-26. https://doi.org/10.1016/j.polymer.2019.03.027
  4. D. W. R. Balkenende, C. A. Monnier, G. L. Fiore, and C. Weder, "Optically Responsive Supramolecular Polymer Glasses", Nat. Commun., 2016, 7, 10995. https://doi.org/10.1038/ncomms10995
  5. W. Lee, S. Y. Kwak, and J. W. Chung, "Arm-length-dependent Phase Transformation and Dual Dynamic Healing Behavior of Supramolecular Networks Consisting of Ureidopyrimidinone-end-functionalized Semi-crystalline Star Polymer", Eur. Polym. J., 2020, 138, 109976. https://doi.org/10.1016/j.eurpolymj.2020.109976
  6. S. Yoshida, H. Ejima, and N. Yoshie, "Tough Elastomers with Superior Self-Recoverability Induced by Bioinspired Multiphase Design", Adv. Funct. Mater., 2017, 27, 1701670. https://doi.org/10.1002/adfm.201701670
  7. M. Wei, M. Zhan, D. Yu, H. Xie, M. He, K. Yang, and Y. Wang, "Novel Poly(tetramethylene ether)glycol and Poly(ε-caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity", ACS Appl. Mater. Interfaces, 2015, 7, 2585-2596. https://doi.org/10.1021/am507575z
  8. M. V. Biyani, E. J. Foster, and C. Weder, "Light-Healable Supramolecular Nanocomposites Based on Modified Cellulose Nanocrystals", ACS Macro Lett., 2013, 2, 236-240. https://doi.org/10.1021/mz400059w
  9. H. Yan, Q. Jiang, J. Wang, S. Cao, Y. Qiu, H. Wang, Y. Liao, and X. Xie, "A Triple-stimuli Responsive Supramolecular Hydrogel Based on Methoxy-azobenzene-grafted Poly(acrylic acid) and β-cyclodextrin Dimer", Polymer, 2021, 221, 123617. https://doi.org/10.1016/j.polymer.2021.123617
  10. J. Sautaux, L. Montero de Espinosa, S. Balog, and Christoph Weder, "Multistimuli, Multiresponsive Fully Supramolecular Orthogonally Bound Polymer Networks", Macromolecules, 2018, 51, 5867-5874. https://doi.org/10.1021/acs.macromol.8b00555
  11. X. Wang, J. Wang, Y. Yang, F. Yang, and D. Wu, "Fabrication of Multi-stimuli Responsive Supramolecular Hydrogels Based on Host-guest Inclusion Complexation of a Tadpole-shaped Cyclodextrin Derivative with the Azobenzene Dimer", Polym. Chem., 2017, 8, 3901-3909. https://doi.org/10.1039/C7PY00698E
  12. G. K. Bains, S. H. Kim, E. J. Sorin, and V. Narayanaswami, "The Extent of Pyrene Excimer Fluorescence Emission Is a Reflector of Distance and Flexibility: Analysis of the Segment Linking the LDL Receptor-Binding and Tetramerization Domains of Apolipoprotein E3", Biochemistry, 2012, 51, 6207-6219. https://doi.org/10.1021/bi3005285
  13. J. Duhamel, "New Insights in the Study of Pyrene Excimer Fluorescence to Characterize Macromolecules and Their Supramolecular Assemblies in Solution", Langmuir, 2012, 28, 6527-6538. https://doi.org/10.1021/la2047646
  14. D. Sahoo, V. Narayanaswami, C. M. Kay, and R. O. Ryan, "Pyrene Excimer Fluorescence: A Spatially Sensitive Probe To Monitor Lipid-Induced Helical Rearrangement of Apolipophorin III", Biochemistry, 2000, 39, 6594-6601. https://doi.org/10.1021/bi992609m
  15. S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, and S. J. Rowan, "A Healable Supramolecular Polymer Blend Based on Aromatic π-π Stacking and Hydrogen-Bonding Interactions", J. Am. Chem. Soc., 2010, 132, 12051-12058. https://doi.org/10.1021/ja104446r
  16. H. Ma, F. Wang, W. Li, Y. Ma, X. Yao, D. Lu, Y. Yang, Z. Zhang, and Z. Lei, "Supramolecular Assemblies of Azobenzene-β-cyclodextrin Dimers and Azobenzene Modified Polycaprolactones", J. Phys. Org. Chem., 2014, 27, 722-728. https://doi.org/10.1002/poc.3331
  17. B. Neises and W. Steglich, "Simple Method for the Esterification of Carboxylic", Angewandte Chemie, 1978, 17, 522-524. https://doi.org/10.1002/anie.197805221
  18. C. Bonneaud, M. Decostanzi, J. Burgess, G. Trusiano, T. Burgess, R. Bongiovanni, C. Joly-Duhamel, and C. M. Friesen, "Synthesis of α,β-unsaturated Esters of Perfluoropolyalkylethers (PFPAEs) Based on Hexafluoropropylene Oxide Units for Photopolymerization", RSC Adv., 2018, 8, 32664-32671. https://doi.org/10.1039/c8ra06354k
  19. E. Ostmark, L. Macakova, T. Auletta, M. Malkoch, E. Malmstro, and E. Blomberg, "Dendritic Structures Based on Bis(hydroxymethyl)propionic Acid as Platforms for Surface Reactions", Langmuir, 2005, 21, 4512-4519. https://doi.org/10.1021/la047077b
  20. S. H. Jang, J. Lee, J. W. Chung, and S. H. Kim, "Effects of Macromonomeric Length of Ureidopyrimidinone-Induced Supramolecular Polymers on Their Crystalline Structure and Mechanical/Rheological Properties", Macromol. Res., 2019, 27, 729-737. https://doi.org/10.1007/s13233-019-7149-6
  21. T. F. A. de Greef, G. Ercolani, G. Ligthart, E. W. Meijer, and R. P. Sijbesma, "Influence of Selectivity on the Supramolecular Polymerization of AB-Type Polymers Capable of Both A.A and A.B Interactions", J. Am. Chem. Soc., 2008, 130, 13755-13764. https://doi.org/10.1021/ja8046409