DOI QR코드

DOI QR Code

Tuning Electrical Performances of Organic Charge Modulated Field-Effect Transistors Using Semiconductor/Dielectric Interfacial Controls

유기반도체와 절연체 계면제어를 통한 유기전하변조 트랜지스터의 전기적 특성 향상 연구

  • Park, Eunyoung (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Oh, Seungtaek (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Lee, Hwa Sung (Department of Materials Science and Chemical Engineering, Hanyang University)
  • 박은영 (한양대학교 재료화학공학과) ;
  • 오승택 (한양대학교 재료화학공학과) ;
  • 이화성 (한양대학교 재료화학공학과)
  • Received : 2022.05.09
  • Accepted : 2022.05.25
  • Published : 2022.06.30

Abstract

Here, the surface characteristics of the dielectric were controlled by introducing the self-assembled monolayers (SAMs) as the intermediate layers on the surface of the AlOx dielectric, and the electrical performances of the organic charge modulated transistor (OCMFET) were significantly improved. The organic intermediate layer was applied to control the surface energy of the AlOx gate dielectric acting as a capacitor plate between the control gate (CG) and the floating gate (FG). By applying the intermediate layers on the gate dielectric surface, and the field-effect mobility (μOCMFET) of the OCMFET devices could be efficiently controlled. We used the four kinds of SAM materials, octadecylphosphonic acid (ODPA), butylphosphonic acid (BPA), (3-bromopropyl)phosphonic acid (BPPA), and (3-aminopropyl)phosphonic acid (APPA), and each μOCMFET was measured at 0.73, 0.41, 0.34, and 0.15 cm2V-1s-1, respectively. The results could be suggested that the characteristics of each organic SAM intermediate layer, such as the length of the alkyl chain and the type of functionalized end-group, can control the electrical performances of OCMFET devices and be supported to find the optimized fabrication conditions, as an efficient sensing platform device.

본 연구는 AlOx유전체 표면에 유기 자립조립 단분자막 (self-assembled monolayer, SAM) 중간층을 도입함으로써 유전체의 표면특성을 제어하고, 최종적으로 유기전하변조트랜지스터 (Organic charge modulated field-effect transistor, OCMFET)의 전기적 특성을 향상시킨 결과를 제시하였다. 유기 중간층을 적용함으로써, OCMFET의 컨트롤 게이트(CG, Control gate)와 플로팅 게이트 (FG, Floating gate) 사이 커패시터 플레이트로 작용하는 산화알루미늄 게이트 유전체의 표면 에너지를 제어하였으며, FET의 가장 중요한 성능변수인 전계효과 이동도(field-effect transistor, μFET)를 향상시켰다. 사용된 SAMs은 네가지의 PA (Octadecylphosphonic acid, Butylphosphonic acid, (3-Bromopropyl)phosphonic acid, (3-Aminopropyl) phosphonic acid)를 사용하여 형성하였으며, 각각 0.73, 0.41, 0.34, 0.15 cm2V-1s-1의 μOCMFET를 나타내었다. 이 연구를 통해 유기 SAM 중간층의 알킬 체인(Alkyl chain)의 길이 및 말단기의 특성이 소자의 전기적 성능을 제어하는데 중요한 요인임을 확인하였으며, 이 결과를 통해 향후 최적의 센서 플랫폼으로서의 OCMFET 소자성능 최적화에 기여할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

This research was supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008458, The Competency Development Program for Industry Specialist)

References

  1. P. Friederich, A. Fediai, S. Kaiser, M. Konrad, N. Jung, and W. Wenzel, Adv.Mater., 31, 1808256 (2019). https://doi.org/10.1002/adma.201808256
  2. T. W. Keller, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, A. M. Haase, E. D. Vogel, and D. S Theiss, Chem. Mater. 16, 23, 4413-4422, (2004). https://doi.org/10.1021/cm049614j
  3. H. Sirringhaus, Adv.Mater. 26, 1319-1335 (2014). https://doi.org/10.1002/adma.201304346
  4. Y. Jie, Z. Zhiyuan, W, Shuai, G. Yunlong, and L. Yunqi, Chem., 4 (12), 2748-2785, (2018). https://doi.org/10.1016/j.chempr.2018.08.005
  5. H. Zhu, E. S. Shin, A. Liu, D. Ji, Y. Xu, and Y. Y. Noh, Adv. Funct. Mater., 30, 1904588, (2020). https://doi.org/10.1002/adfm.201904588
  6. S. Steudel, K. Myny, V. Arkhipov, C. Deibel, S. D. Vusser, J. Genoe, and P. Heremans, Nat. Mater., 4, 597 (2005). https://doi.org/10.1038/nmat1434
  7. M. R. R Khan, S. Oh, G. Choi, and H. S. Lee, Sens. Actuators B Chem., 309, 127783, (2020). https://doi.org/10.1016/j.snb.2020.127783
  8. S. Riera-Galindo, F. Leonardi, and R. M. Pfattner, Adv. Mater. Technol., 4, 1900104, (2019). https://doi.org/10.1002/admt.201900104
  9. X. Ren, F. Yang, X. Gao, S. Cheng, X. Zhang, H. Dong, and W. Hu, Adv. Energy Mater., 8, 1801003, (2018). https://doi.org/10.1002/aenm.201801003
  10. P. Xuan, J. Tengyu, G. Jing, H. Cheng, S. Yumeng, and C. Wei, Small, 16, 2001504, (2020). https://doi.org/10.1002/smll.202001504
  11. H. Li, W. Shi, J. Song, H. J. Jang, J. Dailey, J. Yu, and H. E. Katz, Chem. Rev., 119, (2019).
  12. H. Shen, Y. Zou, Y. Zang, D. Huang, W. Jin, C. A. Di, and D. Zhu, Mater. Horiz., 5, 240-247, (2018). https://doi.org/10.1039/c7mh00887b
  13. S. Oh, G. Choi, J. Seo, S Li, T. Hwang, E. Park, and H. S. Lee, ACS Appl. Mater. Interfaces, 13, 56385-56393, (2021). https://doi.org/10.1021/acsami.1c15116
  14. S. Barbar, Z. Martin, and M. Irimia-Vladu, Chem. Soc. Rev., 48, 1787-1825, (2019). https://doi.org/10.1039/c8cs00928g
  15. X. Wu, S. Mao, J. Chen, and J. Huang, Adv. Mater., 30, 1705642, (2018). https://doi.org/10.1002/adma.201705642
  16. Y. Chu, H. Li, J. Huang, and H. E. Katz, Adv. Mater. Technol., 4, 1900410, (2019). https://doi.org/10.1002/admt.201900410
  17. O. Knopfmacher, M. L. Hammock, A. L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, and Z. Bao, Nat. Commun., 5, 2954, (2014). https://doi.org/10.1038/ncomms3954
  18. S. Lai, M. Demelas,G. Casula, P. Cosseddu, M. Barbaro, and A. Bonfiglio, Adv.Mater., 25, 103-107, (2013). https://doi.org/10.1002/adma.201202996
  19. G. Choi, K. Lee, S. Oh, J. Seo, E. Park, Y. D. Park, J. Lee, and H. S. Lee, J. Mater. Chem. C, 9, 8179, (2021). https://doi.org/10.1039/D1TC01073E
  20. M. Demelasa, S. Laia, A. Spanuac, S. Martinoiac, P. Cossedduab, M. Barbaroa, and A. Bonfiglio, J. Mater. Chem. B, 1, 3811-3819, (2013). https://doi.org/10.1039/c3tb20237b
  21. S. Lai, M. Barbaro, and A. Bonfiglio, Sens. Actuators B Chem., 233, 314-319, (2016). https://doi.org/10.1016/j.snb.2016.04.095
  22. A. Spanu, F. Viola, S. Lai, P. Cosseddu, P. C. Ricci and, A. Bonfiglio, Org. Electron., 48, 188-193, (2017). https://doi.org/10.1016/j.orgel.2017.06.010
  23. A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D'Urso, H. Liu, and L. Li, Langmuir, 30, 8598-8606, (2014). https://doi.org/10.1021/la5018328
  24. T. Yamamoto, K. Takimiya, and J. Am. Chem. Soc., 129, 2224-2225, (2007). https://doi.org/10.1021/ja068429z
  25. S. Jang, D. Son, S. Hwang, M. Kang, S. K. Lee, D. Y. Jeon, S. Bae, S. H. Lee, D. S. Lee, and T. W. Kim, Nano Converg., 5, 20, (2018). https://doi.org/10.1186/s40580-018-0152-3
  26. C. Klinke, A. Afzali, and P. Avouris, Chem. Phys. Lett., 430, 75-79, (2006). https://doi.org/10.1016/j.cplett.2006.08.090
  27. A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, and R. G. Gordon, Nano Lett., 4, 447-450, (2004). https://doi.org/10.1021/nl035185x
  28. J. S. Park, A. N. Vo, D. Barriet, Y. S. Shon, and T. R. Lee, Langmuir, 21, 2902-2911, (2005). https://doi.org/10.1021/la0475573
  29. S. H. Kim, J. Lee, N. Park, H. Min, H. W. Park, D. H. Kim, and S. H., Lee, J. Phys. Chem. C, 119, 28819-28827, (2015). https://doi.org/10.1021/acs.jpcc.5b05533
  30. Y. Wu, Z. Wang, L. Yang, Y. Qiao, D. Chang, Y. Yan, Z. Wu, Z. Hu, J. Zhang, X. Lu, Y. Zhao, and Y. Liu, ACS Appl. Mater. Interfaces, 14, 3095, (2022). https://doi.org/10.1021/acsami.1c20672