DOI QR코드

DOI QR Code

QLEDs 효율 및 안정성 향상을 위한 전하 수송 소재 개발 동향

Research trend in the development of charge transport materials to improve the efficiency and stability of QLEDs

  • 김예진 (금오공과대학교 고분자공학과) ;
  • 박수진 (금오공과대학교 고분자공학과) ;
  • 이동구 (경상국립대학교 반도체공학과) ;
  • 이원호 (금오공과대학교 고분자공학과)
  • Gim, Yejin (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Park, Sujin (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Donggu (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Lee, Wonho (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2022.02.22
  • 심사 : 2022.04.13
  • 발행 : 2022.06.30

초록

양자점은 수 나노미터 크기의 반도체 나노입자로 우수한 발광 특성 및 색순도, 간단한 밴드갭 조절의 장점 때문에 이를 발광원으로 사용한 양자점 디스플레이가 차세대 디스플레이로 주목받고 있다. 하지만 전하 주입 불균형 문제로 인해서 소자의 효율 및 안정성에 큰 문제가 발생하고 이를 해결하기 위한 많은 연구가 진행되었다. 본 논문에서는 전자 및 정공 수송층에 중간층을 삽입하여 양자점 디스플레이의 발광과 수명 특성을 향상시킨 연구와 정공 수송층의 구조 변화를 통해서 정공 수송 능력을 향상시킨 연구들에 대해서 소개하고자 한다.

Colloidal quantum dots (QDs) have gained attention for applications in quantum dot light emitting diodes (QLEDs) due to their high photoluminescence quantum yield, narrow emission spectra, and tunable bandgap. Nevertheless, non-radiative recombination induced by electron and hole imbalance deteriorates the device efficiency and stability. To overcome the problem, researchers have been trying to enhance hole transport properties of hole transporting layers (HTL) and/or slow down the electron injection in electron transport layer (ETL). Here, we summarize two approaches: i) development of interfacial materials between QD and ETL (or HTL); ii) engineering of HTL by blending or multi-layer approaches.

키워드

과제정보

이 연구는 금오공과대학교 대학 학술연구비로 지원되었음(2021년).

참고문헌

  1. V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature, 370, 354 (1994). https://doi.org/10.1038/370354a0
  2. J. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I. Ding, J. Luo, B. Chen, A. K. -. Jen, D. S. Ginger, Nano Letters, 6, 463 (2006). https://doi.org/10.1021/nl052417e
  3. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, Nature Photonics, 1, 717 (2007). https://doi.org/10.1038/nphoton.2007.226
  4. M. Zorn, W. K. Bae, J. Kwak, H. Lee, C. Lee, R. Zentel, K. Char, ACS Nano, 3, 1063 (2009). https://doi.org/10.1021/nn800790s
  5. L. Qian, Y. Zheng, J. Xue, P. H. Holloway, Nature Photonics, 5, 543 (2011). https://doi.org/10.1038/nphoton.2011.171
  6. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature, 515, 96 (2014). https://doi.org/10.1038/nature13829
  7. J. Yun, J. Kim, H. Jang, K. J. Lee, J. H. Seo, B. J. Jung, G. Kim, J. Kwak, Organic Electronics, 50, 82 (2017). https://doi.org/10.1016/j.orgel.2017.07.028
  8. D. Kim, Y. Fu, S. Kim, W. Lee, K. Lee, H. K. Chung, H. Lee, H. Yang, H. Chae, ACS Nano, 11, 1982 (2017). https://doi.org/10.1021/acsnano.6b08142
  9. Y. Cun, C. Mai, Y. Luo, L. Mu, J. Li, L. Cao, D. Yu. M. Li, B. Zhang, H. Li, J. Wang, Journal of Materials Chemistry C, 8, 4264 (2020). https://doi.org/10.1039/c9tc06850c
  10. S. Rhee, D. Hahm, H. Seok, J. H. Chang, D. Jung, M. Park, E. Hwang, D. C. Lee, Y. Park, H. Kim, W. K. Bae, ACS Nano, 15, 20332 (2021). https://doi.org/10.1021/acsnano.1c08631
  11. Y. Li, X. Dai, D. Chen, Y. Ye, Y. Gao, X. Peng, Y. Jin, Journal of Materials Chemistry C, 7, 3154 (2019). https://doi.org/10.1039/c8tc06511j
  12. H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, H. Chae, RSC Advances, 9, 11634 (2019). https://doi.org/10.1039/c9ra00145j
  13. L. Chen, S. Wang, D. Li, Y. Fang, H. Shen, L. Li, Z. Du, ACS Applied Materials & Interfaces, 10 , 24232 (2018). https://doi.org/10.1021/acsami.8b00770
  14. Q. Wu, F. Cao, H. Wang, J. Kou, Z. Zhang, X. Yang, Advanced Science, 7, 2001760 (2020). https://doi.org/10.1002/advs.202001760
  15. M. D. Ho, D. Kim, N. Kim, S. M. Cho, H. Chae, ACS Applied Materials & Interfaces, 5, 12369 (2013). https://doi.org/10.1021/am403173n
  16. J. Pan, J. Chen, Q. Huang, L. Wang, W. Lei, RSC Advances, 7, 43366 (2017). https://doi.org/10.1039/c7ra08302e
  17. Y. Zhao, L. Chen, J. Wu, X. Tan, Z. Xiong, Y. Lei, IEEE Electron Device Letters, 41, 80 (2020). https://doi.org/10.1109/led.2019.2953088
  18. P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, Z. Cui, ACS Applied Materials & Interfaces, 12, 13087 (2020). https://doi.org/10.1021/acsami.0c01001
  19. Y. Liu, C. Jiang, C. Song, J. Wang, L. Mu, Z. He, Z. Zhong, Y. Cun, C. Mai, J. Wang, J. Peng, Y. Cao, ACS Nano, 12, 1564 (2018). https://doi.org/10.1021/acsnano.7b08129
  20. J. Chen, D. Song, S. Zhao, B. Qiao, W. Zheng, Z. Xu, Organic Electronics, 94, 106169 (2021). https://doi.org/10.1016/j.orgel.2021.106169
  21. T. Davidson-Hall, H. Aziz, ACS Applied Materials & Interfaces, 12, 16782 (2020). https://doi.org/10.1021/acsami.9b23567
  22. J. H. Hwang, J. Kim, B. J. Kim, M. Park, Y. W. Kwon, M. An, D. Y. Shin, J. M. Jeon, J. Y. Kim, W. Lee, J. Lim, D. Lee, Applied Surface Science, 558, 149944 (2021). https://doi.org/10.1016/j.apsusc.2021.149944
  23. S. Rhee, J. H. Chang, D. Hahm, K. Kim, B. G. Jeong, H. J. Lee, J. Lim, K. Char, C. Lee, W. K. Bae, ACS Applied Materials & Interfaces, 11, 40252 (2019). https://doi.org/10.1021/acsami.9b13217