DOI QR코드

DOI QR Code

Echinacea purpurea extract inhibits LPS-induced inflammatory response by interfering with TLR4-mediated NF-κB and MAPKs signaling pathways

  • Received : 2021.12.09
  • Accepted : 2021.12.22
  • Published : 2022.02.25

Abstract

Echinacea purpurea (Asteraceae family) is widely used in the European countries and the United States due to its proven immune enhancement and anti-inflammatory effects. Echinacea purpurea has been reported prevent and treat upper respiratory tract infections and common cold, but the underlying molecular mechanisms are not well understood. In the present study, we examined the anti-inflammatory effects and molecular mechanisms of Echinacea purpurea (EP) extract using lipopolysaccharide (LPS)-stimulated signal pathways in RAW264.7 cells. Our results suggest that EP extract exerts anti-inflammatory effects by down-regulating the expression of LPS-induced toll-like receptor 4 (TLR4), subsequently inhibiting the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways and suppression of the release of pro-inflammatory cytokines. These results suggest that EP extract is a potential therapeutic agent for inflammatory diseases.

Keywords

Acknowledgement

The authors thank Evear Extraction, Feline, France for providing samples, encouragement, and generous support.

References

  1. Medzhitov R, Janeway JrC. Innate immunity. N Engl J Med. 2000;343(5):338-44. https://doi.org/10.1056/NEJM200008033430506
  2. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45(12):e66. https://doi.org/10.1038/emm.2013.97
  3. Janeway JrCA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  4. Medzhitov R, Janeway JrC. Innate immune recognition: mechanisms and pathways. Immunol Rev. 2000;173:89-97. https://doi.org/10.1034/j.1600-065X.2000.917309.x
  5. Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54:1-13. https://doi.org/10.1101/SQB.1989.054.01.003
  6. Scott MG, Gold MR, Hancock RE. Interaction of cationic peptides with lipoteichoic acid and gram-positive bacteria. Infect Immun. 1999;67(12):6445-53. https://doi.org/10.1128/iai.67.12.6445-6453.1999
  7. Cheon SY, Chung KS, Jeon E, Nugroho A, Park HJ, An HJ. Anti-inflammatory activity of saxifragin via inhibition of NF-κB involves caspase-1 activation. J Nat Prod. 2015;78(7):1579-85. https://doi.org/10.1021/acs.jnatprod.5b00145
  8. Maruthamuthu V, Henry LJK, Ramar MK, Kandasamy R. Myxopyrum serratulum ameliorates airway inflammation in LPS-stimulated RAW 264.7 macrophages and OVA-induced murine model of allergic asthma. J Ethnopharmacol 2020;255:112369. https://doi.org/10.1016/j.jep.2019.112369
  9. Barton GM. A calculated response: control of inflammation by the innate immune system. Journal Clin Investg. 2008;118(2):413-20. https://doi.org/10.1172/JCI34431
  10. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008;42(2):145-51. https://doi.org/10.1016/j.cyto.2008.01.006
  11. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol. 2000;12(1):20-6. https://doi.org/10.1016/S0952-7915(99)00046-1
  12. Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16(1):225-60. https://doi.org/10.1146/annurev.immunol.16.1.225
  13. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995;9(22):2723-35. https://doi.org/10.1101/gad.9.22.2723
  14. Rao KMK. MAP kinase activation in macrophages. J Leukoc Biol. 2001;69(1):3-10. https://doi.org/10.1189/jlb.69.1.3
  15. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis. 2010;1802(4):396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
  16. Craig WJ. Health-promoting properties of common herbs. Am J Clin Nutr. 1999;70(3):491s-99s. https://doi.org/10.1093/ajcn/70.3.491s
  17. Kumar KM, Ramaiah S. Pharmacological importance of Echinacea purpurea. Int J Pharma Bio Sci. 2011;2(4):304-14.
  18. Woelkart K, Linde K, Bauer R. Echinacea for preventing and treating the common cold. Planta Med. 2008;74(06):633-7. https://doi.org/10.1055/s-2007-993766
  19. Yamada K, Hung P, Park TK, Park PJ, Lim BO. A comparison of the immunostimulatory effects of the medicinal herbs Echinacea, Ashwagandha and Brahmi. J Ethnopharmaco. 2011;137(1):231-5. https://doi.org/10.1016/j.jep.2011.05.017
  20. Axen A, Carlsson A, Engstrom A, Bennich H. Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. Eur J Biochem. 1997;247(2):614-619. https://doi.org/10.1111/j.1432-1033.1997.00614.x
  21. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428-35. https://doi.org/10.1038/nature07201
  22. Zhao G, Wu H, Jiang K, Chen X, Wang X, Qiu C, et al. The anti-inflammatory effects of interferon tau by suppressing NF-κB/MMP9 in macrophages stimulated with Staphylococcus aureus. J Interferon Cytokine Res. 2016;36(8):516-24. https://doi.org/10.1089/jir.2015.0170
  23. Wang T, Hou W, Fu Z. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice. Biochem Biophys Res Commun. 2017;485(2):284-9. https://doi.org/10.1016/j.bbrc.2017.02.090
  24. Park JR, Lee H, Kim SI, Yang SR. The tri-peptide GHK-Cu complex ameliorates lipopolysaccharide-induced acute lung injury in mice. Oncotarget. 2016;7(36):58405. https://doi.org/10.18632/oncotarget.11168
  25. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219-46. https://doi.org/10.1146/annurev-physiol-021909-135846
  26. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res-Fundam Mol Mech Mutagen. 2001;480:243-68. https://doi.org/10.1016/S0027-5107(01)00183-X
  27. Gil A, Aguilera CM, Gil-Campos M, Canete R. Altered signalling and gene expression associated with the immune system and the inflammatory response in obesity. Br J Nutr. 2007;98(S1):S121-6. https://doi.org/10.1017/S0007114507838050
  28. Zhimin L, Tony H. Degradation of activated protein kinases by ubiquitination. Annu Rev Biochem. 2009;78:435-75. https://doi.org/10.1146/annurev.biochem.013008.092711
  29. Weinstein SL, Sanghera JS, Lemke K, DeFranco AL, Pelech SL. Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J Biol Chem. 1992;267(21):14955-62. https://doi.org/10.1016/S0021-9258(18)42133-3
  30. Sanghera JS, Weinstein SL, Aluwalia M, Girn J, Pelech SL. Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol. 1996;156(11):4457-65. https://doi.org/10.4049/jimmunol.156.11.4457
  31. Swantek JL, Cobb MH, Geppert TD. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol. 1997;17(11):6274-82. https://doi.org/10.1128/MCB.17.11.6274
  32. Chen CC, Wang JK. p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol Pharmacol. 1999;55(3):481-8.
  33. Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13(9):679-92. https://doi.org/10.1038/nri3495
  34. Roget K, Ben-Addi A, Mambole-Dema A, Gantke T, Yang HT, Janzen J, et al. IκB kinase 2 regulates TPL-2 activation of extracellular signal-regulated kinases 1 and 2 by direct phosphorylation of TPL-2 serine 400. Mol Cell Biol. 2012;32(22):4684-90. https://doi.org/10.1128/MCB.01065-12
  35. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145-51. https://doi.org/10.1016/j.cyto.2008.01.006
  36. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085-8. https://doi.org/10.1126/science.282.5396.2085
  37. Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X. IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NFκB. J Biol Chem. 2001;276(45):41661-7. https://doi.org/10.1074/jbc.M102262200
  38. Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 1999;13(10):1297-1308. https://doi.org/10.1101/gad.13.10.1297
  39. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature. 1996;383(6599):443-6. https://doi.org/10.1038/383443a0
  40. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13(8):1015-24. https://doi.org/10.1101/gad.13.8.1015
  41. Jadhav T, Geetha T, Jiang J, Wooten MW. Identification of a consensus site for TRAF6/p62 polyubiquitination. Biochem Biophys Res Commun. 2008;371(3):521-4. https://doi.org/10.1016/j.bbrc.2008.04.138
  42. Yang K, Zhu J, Sun S, Tang Y, Zhang B, Diao L, et al. The coiled-coil domain of TRAF6 is essential for its auto-ubiquitination. Biochem Biophys Res Commun. 2004;324(1):432-9. https://doi.org/10.1016/j.bbrc.2004.09.070
  43. Chiu YH, Zhao M, Chen ZJ. Ubiquitin in NF-κB Signaling. Chem Rev. 2009;109(4):1549-60. https://doi.org/10.1021/cr800554j