Acknowledgement
This work was supported by a grant from Kyung Hee University in 2020 (KHU-20202190).
References
- Williams GT, Smith CA. 1993. Molecular regulation of apoptosis: genetic controls on cell death. Cell 74: 777-779. https://doi.org/10.1016/0092-8674(93)90457-2
- Ola MS, Nawaz M, Ahsan H. 2011. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol. Cell Biochem. 351: 41-58. https://doi.org/10.1007/s11010-010-0709-x
- Ayyash M, Tamimi H, Ashhab Y. 2012. Developing a powerful in silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome. BMC Bioinformatics 13: 14. https://doi.org/10.1186/1471-2105-13-14
- Lotz S, Aga E, Wilde I, Van Zandbergen G, Hartung T, Solbach W, et al. 2004. Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J. Leukoc. Biol. 75: 467-477. https://doi.org/10.1189/jlb.0803360
- Wang J, Qi L, Mei L, Wu Z, Wang H. 2016. C. butyricum lipoteichoic acid inhibits the inflammatory response and apoptosis in HT-29 cells induced by S. aureus lipoteichoic acid. Int. J. Biol. Macromol. 88: 81-87. https://doi.org/10.1016/j.ijbiomac.2016.03.054
- Tian Y, Zhang X, Zhang K, Song Z, Wang R, Huang S, et al. 2013. Effect of Enterococcus faecalis lipoteichoic acid on apoptosis in human osteoblast-like cells. J. Endod. 39: 632-637. https://doi.org/10.1016/j.joen.2012.12.019
- Miller M, Dreisbach A, Otto A, Becher Dr, Bernhardt Jr, Hecker M, et al. 2011. Mapping of interactions between human macrophages and Staphylococcus aureus reveals an involvement of MAP kinase signaling in the host defense. J. Proteome Res. 10: 4018-4032. https://doi.org/10.1021/pr200224x
- Leemans JC, Vervoordeldonk MJ, Florquin S, van Kessel KP, van der Poll T. 2002. Differential role of interleukin-6 in lung inflammation induced by lipoteichoic acid and peptidoglycan from Staphylococcus aureus. Am. J. Respir. Crit. Care Med. 165: 1445-1450. https://doi.org/10.1164/rccm.2106045
- Jeong JH, Jang S, Jung BJ, Jang K-S, Kim B-G, Chung DK, et al. 2015. Differential immune-stimulatory effects of LTAs from different lactic acid bacteria via MAPK signaling pathway in RAW 264.7 cells. Immunobiology 220: 460-466. https://doi.org/10.1016/j.imbio.2014.11.002
- Kim HG, Kim N-R, Gim MG, Lee JM, Lee SY, Ko MY, et al. 2008. Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-α production in THP-1 cells and endotoxin shock in mice. J. Immunol. 180: 2553-2561. https://doi.org/10.4049/jimmunol.180.4.2553
- Zeng RZ, Kim HG, Kim NR, Gim MG, Ko MY, Lee SY, et al. 2011. Differential gene expression profiles in human THP-1 monocytes treated with Lactobacillus plantarum or Staphylococcus aureus lipoteichoic acid. J. Korean Soc. Appl. Biol. Chem. 54: 763-770. https://doi.org/10.1007/BF03253157
- Wang X, Lin Y. 2008. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 29: 1275-1288. https://doi.org/10.1111/j.1745-7254.2008.00889.x
- Ni L, Lu J. 2018. Interferon gamma in cancer immunotherapy. Cancer Med. 7: 4509-4516. https://doi.org/10.1002/cam4.1700
- Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, et al. 2011. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat. Med. 17: 1594-1601. https://doi.org/10.1038/nm.2542
- Suk K, Chang I, Kim Y-H, Kim S, Kim JY, Kim H, et al. 2001. Interferon γ (IFNγ) and tumor necrosis factor α synergism in ME-180 cervical cancer cell apoptosis and necrosis. IFNγ inhibits cytoprotective NF-κB through STAT1/IRF-1 pathways. J. Biol. Chem. 276: 13153-13159. https://doi.org/10.1074/jbc.M007646200
- Stephens LA, Thomas HE, Ming L, Grell M, Darwiche R, Volodin L, et al. 1999. Tumor necrosis factor-α-activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic β cells. Endocrinology 140: 3219-3227. https://doi.org/10.1210/en.140.7.3219
- Buntinx M, Gielen E, Van Hummelen P, Raus J, Ameloot M, Steels P, et al. 2004. Cytokine-induced cell death in human oligodendroglial cell lines. II: Alterations in gene expression induced by interferon-γ and tumor necrosis factor-α. J. Neurosci. Res. 76: 846-861. https://doi.org/10.1002/jnr.20117
- Geng Y-J, Wu Q, Muszynski M, Hansson GrK, Libby P. 1996. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-γ, Tumor necrosis factor-α, and interleukin-1β. Arterioscler. Thromb. Vasc. Biol. 16: 19-27. https://doi.org/10.1161/01.ATV.16.1.19
- Mir M, Asensio V, Tolosa L, Gou-Fabregas M, Soler R, Llado J, et al. 2009. Tumor necrosis factor alpha and interferon gamma cooperatively induce oxidative stress and motoneuron death in rat spinal cord embryonic explants. Neuroscience 162: 959-971. https://doi.org/10.1016/j.neuroscience.2009.05.049
- Schiller JH, Bittner G, Storer B, Willson JK. 1987. Synergistic antitumor effects of tumor necrosis factor and γ-interferon on human colon carcinoma cell lines. Cancer Res. 47:2809-2813.
- Roberts NJ, Zhou S, Diaz Jr LA, Holdhoff M. 2011. Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget 2: 739-751. https://doi.org/10.18632/oncotarget.344
- Missiakas D, Winstel V. 2021. Selective Host Cell Death by Staphylococcus aureus: A strategy for bacterial persistence. Front. Immunol. 11: 621733. https://doi.org/10.3389/fimmu.2020.621733
- Jang KO, Lee YW, Kim H, Chung DK. 2021. Complement inactivation strategy of Staphylococcus aureus using decay-accelerating factor and the response of infected HaCaT cells. Int. J. Mol. Sci. 22: 4015. https://doi.org/10.3390/ijms22084015
- Yoshimura A, Ito M, Chikuma S, Akanuma T, Nakatsukasa H. 2018. Negative regulation of cytokine signaling in immunity. Cold Spring Harb. Perspect. Biol. 10: a028571. https://doi.org/10.1101/cshperspect.a028571
- Naka T, Fujimoto M, Tsutsui H, Yoshimura A. 2005. Negative regulation of cytokine and TLR signalings by SOCS and others. Adv. Immunol. 87: 61-122. https://doi.org/10.1016/S0065-2776(05)87003-8
- Mostecki J, Showalter BM, Rothman PB. 2005. Early growth response-1 regulates lipopolysaccharide-induced suppressor of cytokine signaling-1 transcription. J. Biol. Chem. 280: 2596-2605. https://doi.org/10.1074/jbc.M408938200
- Fujimoto M, Naka T. 2010. SOCS1, a negative regulator of cytokine signals and TLR responses, in human liver diseases. Gastroenterol. Res. Pract. 2010: 470468. https://doi.org/10.1155/2010/470468