위성영상을 활용한 시공간 분포 적설 연구 동향

  • 박종민 (오하이오 주립대학교 자원환경공학과) ;
  • 전현호 (성균관대학교 건설환경시스템공학과) ;
  • 조성근 (성균관대학교 수자원학과) ;
  • 최민하 (성균관대학교 건설환경공학부)
  • Published : 2022.06.30

Abstract

Keywords

References

  1. Ahn, B., Kwon. T., Cho, K., Lee, J., and Lee, K. (2007) Analysis of cloud properties related to yeongdong heavy snow using the MODIS cloud product. Korean Journal of Remote Sensing, 23 (2), 71-87. https://doi.org/10.7780/KJRS.2007.23.2.71
  2. Amlien, J. (2008). Remote sensing of snow with passive microwave radiometers-A review of current algorithms. Report, 1019, 52.
  3. Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y., Labba, N., Radionov, V., ... & Yang, D. (2011). The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio, 40 (1), 17-31. https://doi.org/10.1007/s13280-011-0212-y
  4. Chang, A. T., Foster, J. L., & Hall, D. K. (1987). Nimbus-7 SMMR derived global snow cover parameters. Annals of glaciology, 9, 39-44. https://doi.org/10.1017/S0260305500200736
  5. Choudhury, B. J., & Chang, A. T. (1979). Two-stream theory of reflectance of snow. IEEE Transactions on Geoscience Electronics, 17 (3), 63-68. https://doi.org/10.1109/TGE.1979.294614
  6. Clifford, D. (2010). Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. International Journal of Remote Sensing, 31 (14), 3707-3726. https://doi.org/10.1080/01431161.2010.483482
  7. Davis, D. T., Chen, Z., Tsang, L., Hwang, J. N., & Chang, A. T. (1993). Retrieval of snow parameters by iterative inversion of a neural network. IEEE Transactions on Geoscience and Remote Sensing, 31 (4), 842-852. https://doi.org/10.1109/36.239907
  8. Derksen, C. (2008). The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals. Remote Sensing of Environment, 112 (5), 2701-2710. https://doi.org/10.1016/j.rse.2008.01.001
  9. Dietz, A. J., Kuenzer, C., Gessner, U., & Dech, S. (2012). Remote sensing of snow-a review of available methods. International Journal of Remote Sensing, 33 (13), 4094-4134. https://doi.org/10.1080/01431161.2011.640964
  10. Dobreva, I. D., & Klein, A. G. (2011). Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance. Remote Sensing of Environment, 115 (12), 3355-3366. https://doi.org/10.1016/j.rse.2011.07.018
  11. Dozier, J. (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote sensing of environment, 28, 9-22. https://doi.org/10.1016/0034-4257(89)90101-6
  12. Forman, B. A., Reichle, R. H., & Derksen, C. (2013). Estimating passive microwave brightness temperature over snow-covered land in North America using a land surface model and an artificial neural network. IEEE Transactions on Geoscience and Remote Sensing, 52 (1), 235-248. https://doi.org/10.1109/TGRS.2013.2237913
  13. Forman, B. A., & Reichle, R. H. (2014). Using a support vector machine and a land surface model to estimate large-scale passive microwave brightness temperatures over snow-covered land in North America. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (9), 4431-4441. https://doi.org/10.1109/JSTARS.2014.2325780
  14. Forman, B. A., & Xue, Y. (2017). Machine learning predictions of passive microwave brightness temperature over snow-covered land using the special sensor microwave imager (SSM/I). Physical Geography, 38 (2), 176-196. https://doi.org/10.1080/02723646.2016.1236606
  15. Foster, J. L., Sun, C., Walker, J. P., Kelly, R., Chang, A., Dong, J., & Powell, H. (2005). Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sensing of environment, 94 (2), 187-203. https://doi.org/10.1016/j.rse.2004.09.012
  16. Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., & Hagolle, O. (2019). Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth System Science Data, 11 (2), 493-514. https://doi.org/10.5194/essd-11-493-2019
  17. Lee, K. S., Jin, D., Yeom, J. M., Seo, M., Choi, S., Kim, J. J., & Han, K. S. (2017). New approach for snow cover detection through spectral pattern recognition with MODIS data. Journal of Sensors, 2017.
  18. Li, H., Wang, Z., He, G., & Man, W. (2017). Estimating snow depth and snow water equivalence using repeat-pass interferometric SAR in the northern piedmont region of the tianshan mountains. Journal of Sensors, 2017.
  19. Lievens, H., Demuzere, M., Marshall, H. P., Reichle, R. H., Brucker, L., Brangers, I., Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W., Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schober, J., & De Lannoy, G. J. (2019). Snow depth variability in the Northern Hemisphere mountains observed from space. Nature communications, 10 (1), 1-12. https://doi.org/10.1038/s41467-018-07882-8
  20. Lievens, H., Brangers, I., Marshall, H. P., Jonas, T., Olefs, M., & De Lannoy, G. (2022). Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps. The Cryosphere, 16 (1), 159-177. https://doi.org/10.5194/tc-16-159-2022
  21. persistence map for northwest Alaska. Remote Sensing of Environment, 163, 23-31. https://doi.org/10.1016/j.rse.2015.02.028
  22. Ministry of Public Safety and Security (2020). The 2020 Annual Natural Disaster Report
  23. Park, J. (2020). Uncertainty Quantification of a Radiative Transfer Model and a Machine Learning Technique for Use as Observation Operators in the Assimilation of Microwave Observations into a Land Surface Model to Improve Soil Moisture and Terrestrial Snow (Doctoral dissertation, University of Maryland, College Park).
  24. Tsai, Y. L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Wet and dry snow detection using Sentinel-1 SAR data for mountainous areas with a machine learning technique. Remote Sensing, 11 (8), 895. https://doi.org/10.3390/rs11080895
  25. Xia, M., Li, Y., Zhang, Y., Weng, L., & Liu, J. (2020). Cloud/snow recognition of satellite cloud images based on multiscale fusion attention network. Journal of Applied Remote Sensing, 14 (3), 032609.
  26. Xiao, X., Zhang, T., Zhong, X., Shao, W., & Li, X. (2018). Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote sensing of environment, 210, 48-64. https://doi.org/10.1016/j.rse.2018.03.008