References
- Ahn, B., Kwon. T., Cho, K., Lee, J., and Lee, K. (2007) Analysis of cloud properties related to yeongdong heavy snow using the MODIS cloud product. Korean Journal of Remote Sensing, 23 (2), 71-87. https://doi.org/10.7780/KJRS.2007.23.2.71
- Amlien, J. (2008). Remote sensing of snow with passive microwave radiometers-A review of current algorithms. Report, 1019, 52.
- Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y., Labba, N., Radionov, V., ... & Yang, D. (2011). The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio, 40 (1), 17-31. https://doi.org/10.1007/s13280-011-0212-y
- Chang, A. T., Foster, J. L., & Hall, D. K. (1987). Nimbus-7 SMMR derived global snow cover parameters. Annals of glaciology, 9, 39-44. https://doi.org/10.1017/S0260305500200736
- Choudhury, B. J., & Chang, A. T. (1979). Two-stream theory of reflectance of snow. IEEE Transactions on Geoscience Electronics, 17 (3), 63-68. https://doi.org/10.1109/TGE.1979.294614
- Clifford, D. (2010). Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. International Journal of Remote Sensing, 31 (14), 3707-3726. https://doi.org/10.1080/01431161.2010.483482
- Davis, D. T., Chen, Z., Tsang, L., Hwang, J. N., & Chang, A. T. (1993). Retrieval of snow parameters by iterative inversion of a neural network. IEEE Transactions on Geoscience and Remote Sensing, 31 (4), 842-852. https://doi.org/10.1109/36.239907
- Derksen, C. (2008). The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals. Remote Sensing of Environment, 112 (5), 2701-2710. https://doi.org/10.1016/j.rse.2008.01.001
- Dietz, A. J., Kuenzer, C., Gessner, U., & Dech, S. (2012). Remote sensing of snow-a review of available methods. International Journal of Remote Sensing, 33 (13), 4094-4134. https://doi.org/10.1080/01431161.2011.640964
- Dobreva, I. D., & Klein, A. G. (2011). Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance. Remote Sensing of Environment, 115 (12), 3355-3366. https://doi.org/10.1016/j.rse.2011.07.018
- Dozier, J. (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote sensing of environment, 28, 9-22. https://doi.org/10.1016/0034-4257(89)90101-6
- Forman, B. A., Reichle, R. H., & Derksen, C. (2013). Estimating passive microwave brightness temperature over snow-covered land in North America using a land surface model and an artificial neural network. IEEE Transactions on Geoscience and Remote Sensing, 52 (1), 235-248. https://doi.org/10.1109/TGRS.2013.2237913
- Forman, B. A., & Reichle, R. H. (2014). Using a support vector machine and a land surface model to estimate large-scale passive microwave brightness temperatures over snow-covered land in North America. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (9), 4431-4441. https://doi.org/10.1109/JSTARS.2014.2325780
- Forman, B. A., & Xue, Y. (2017). Machine learning predictions of passive microwave brightness temperature over snow-covered land using the special sensor microwave imager (SSM/I). Physical Geography, 38 (2), 176-196. https://doi.org/10.1080/02723646.2016.1236606
- Foster, J. L., Sun, C., Walker, J. P., Kelly, R., Chang, A., Dong, J., & Powell, H. (2005). Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sensing of environment, 94 (2), 187-203. https://doi.org/10.1016/j.rse.2004.09.012
- Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., & Hagolle, O. (2019). Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth System Science Data, 11 (2), 493-514. https://doi.org/10.5194/essd-11-493-2019
- Lee, K. S., Jin, D., Yeom, J. M., Seo, M., Choi, S., Kim, J. J., & Han, K. S. (2017). New approach for snow cover detection through spectral pattern recognition with MODIS data. Journal of Sensors, 2017.
- Li, H., Wang, Z., He, G., & Man, W. (2017). Estimating snow depth and snow water equivalence using repeat-pass interferometric SAR in the northern piedmont region of the tianshan mountains. Journal of Sensors, 2017.
- Lievens, H., Demuzere, M., Marshall, H. P., Reichle, R. H., Brucker, L., Brangers, I., Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W., Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schober, J., & De Lannoy, G. J. (2019). Snow depth variability in the Northern Hemisphere mountains observed from space. Nature communications, 10 (1), 1-12. https://doi.org/10.1038/s41467-018-07882-8
- Lievens, H., Brangers, I., Marshall, H. P., Jonas, T., Olefs, M., & De Lannoy, G. (2022). Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps. The Cryosphere, 16 (1), 159-177. https://doi.org/10.5194/tc-16-159-2022
- persistence map for northwest Alaska. Remote Sensing of Environment, 163, 23-31. https://doi.org/10.1016/j.rse.2015.02.028
- Ministry of Public Safety and Security (2020). The 2020 Annual Natural Disaster Report
- Park, J. (2020). Uncertainty Quantification of a Radiative Transfer Model and a Machine Learning Technique for Use as Observation Operators in the Assimilation of Microwave Observations into a Land Surface Model to Improve Soil Moisture and Terrestrial Snow (Doctoral dissertation, University of Maryland, College Park).
- Tsai, Y. L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Wet and dry snow detection using Sentinel-1 SAR data for mountainous areas with a machine learning technique. Remote Sensing, 11 (8), 895. https://doi.org/10.3390/rs11080895
- Xia, M., Li, Y., Zhang, Y., Weng, L., & Liu, J. (2020). Cloud/snow recognition of satellite cloud images based on multiscale fusion attention network. Journal of Applied Remote Sensing, 14 (3), 032609.
- Xiao, X., Zhang, T., Zhong, X., Shao, W., & Li, X. (2018). Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote sensing of environment, 210, 48-64. https://doi.org/10.1016/j.rse.2018.03.008