Sentinel-1 SAR 영상 기반 수체탐지 기법 소개

  • 오승철 (성균관대학교 건설환경시스템공학과) ;
  • 이슬찬 (성균관대학교 수자원학과) ;
  • 김완엽 (성균관대학교 글로벌스마트시티융합전공) ;
  • 최민하 (성균관대학교 건설환경공학부)
  • Published : 2022.06.30

Abstract

Keywords

References

  1. Bao, L., Lv, x., & Yao, J. (2021). Water extraction in SAR Images using features analysis and dual-threshold graph cut model. Remote Sensing, 13(17), 3465. https://doi.org/10.3390/rs13173465
  2. Guillaume, H. Masking "No-value" Pixels on GRD Products generated by the Sentinel-1 ESA IPF. ESA Tech. Rep, 2015. Reference MPC-0243, Issue 1.0.
  3. Hong, S., Jang, H., Kim, N., & Sohn, H. G. (2015). Water area extraction using RADARSAT SAR imagery combined with landsat imagery and terrain information. Sensors, 15(3), 6652-6667. https://doi.org/10.3390/s150306652
  4. Huang, C., Chen, Y., Zhang, S., & Wu, J. (2018). Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, 56(2), 333-360. https://doi.org/10.1029/2018RG000598
  5. Karpatne, A., Khandelwal, A., Chen, X., Mithal, V., Faghmous, J., & Kumar, V. (2016). Global monitoring of inland water dynamics: State-of-the-art, challenges, and opportunities. In Computational sustainability (pp. 121-147). Springer, Cham.
  6. Kim, W., Jeong, J., & Choi, M. (2022). Evaluation of Reservoir Monitoring-based Hydrological Drought Index Using Sentinel-1 SAR Waterbody Detection Technique. Korean Journal of Remote Sensing, 38(2), 153-166. https://doi.org/10.7780/KJRS.2022.38.2.2
  7. Lv, W., Yu, Q., & Yu, W. (2010, October). Water extraction in SAR images using GLCM and support vector machine. In IEEE 10th international conference on signal processing proceedings.
  8. Markert, K. N., Chishtie, F., Anderson, E. R., Saah, D., & Griffin, R. E. (2018). On the merging of optical and SAR satellite imagery for surface water mapping applications. Results in Physics, 9, 275-277. https://doi.org/10.1016/j.rinp.2018.02.054
  9. Park, J. W., Korosov, A. A., Babiker, M., Sandven, S., & Won, J. S. (2017). Efficient thermal noise removal for Sentinel-1 TOPSAR cross-polarization channel. IEEE Transactions on Geoscience and Remote Sensing, 56(3), 1555-1565. https://doi.org/10.1109/tgrs.2017.2765248
  10. Petropoulos, G. P., Ireland, G., & Barrett, B. (2015). Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Physics and Chemistry of the Earth, Parts AiB/C, 83, 36-56. https://doi.org/10.1016/j.pce.2015.02.009
  11. Sophocleous, M. (2002). Interactions between groundwater and surface water: the state of the science. Hydrogeology journal, 10(1), 52-67. https://doi.org/10.1007/s10040-001-0170-8
  12. Tomiyasu, K. (1978). Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface. Proceedings of the IEEE, 66(5), 563-583. https://doi.org/10.1109/PROC.1978.10961
  13. Wright, T. J., Parsons, B. E., & Lu, z. (2004). Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 31(1).
  14. Yuan, X. C., Wu, L. S., & Peng, Q. (2015). An improved Otsu method using the weighted object variance for defect detection. Applied surface science, 349, 472-484. https://doi.org/10.1016/j.apsusc.2015.05.033
  15. Zhang, F., Li, J., Zhang, B., Shen, Q., Ye, H., Wang, S., & Lu, z. (2018). A simple automated dynamic threshold extraction method for the classification of large water bodies from landsat-8 OLI water index images. International Journal of Remote Sensing, 39(11), 3429-3451. https://doi.org/10.1080/01431161.2018.1444292