DOI QR코드

DOI QR Code

갈륨과 Cu/Au 금속층과의 계면반응 연구

Study on the Interfacial Reactions between Gallium and Cu/Au Multi-layer Metallization

  • 배준혁 (조선대학교 용접.접합과학공학) ;
  • 손윤철 (조선대학교 용접.접합과학공학)
  • Bae, Junhyuk (Dept. of Welding & Joining Science Engineering, Chosun University) ;
  • Sohn, Yoonchul (Dept. of Welding & Joining Science Engineering, Chosun University)
  • 투고 : 2022.06.07
  • 심사 : 2022.06.24
  • 발행 : 2022.06.30

초록

본 연구에서는 최근 저온접합 소재로 각광받고 있는 Ga과 대표적인 전극 물질인 Cu와의 반응연구를 실시하여 저온 솔더링 적용시 필요한 정보들을 확인하고자 하였다. 80-200℃ 온도범위에서 Ga과 Cu/Au 기판을 반응시켜 계면반응 및 금속간화합물(IMC) 성장을 관찰하고 분석하였다. 반응계면에서 성장하는 주요한 IMC는 CuGa2 상이었으며 그 상부에는 작은 입자크기를 가지는 AuGa2 IMC 그리고 하부에는 얇은 띠 형상의 Cu9Ga4 IMC가 형성되었다. CuGa2 입자들은 scallop 형상을 보이며 Cu6Sn5 성장의 경우와 비슷하게 반응시간이 증가함에 따라서 큰 형상변화없이 입자 크기가 증가하였다. CuGa2 성장기구를 분석한 결과 120-200℃ 온도범위에서 시간지수는 약 3.0으로 산출되었고, 활성화에너지는 17.7 kJ/mol로 측정되었다.

In this study, a reaction study between Ga, which has recently been spotlighted as a low-temperature bonding material, and Cu, a representative electrode material, was conducted to investigate information necessary for low-temperature soldering applications. Interfacial reaction and intermetallic compound (IMC) growth were observed and analyzed by reacting Ga and Cu/Au substrates in the temperature range of 80-200℃. The main IMC growing at the reaction interface was CuGa2 phase, and AuGa2 IMC with small particle sizes was formed on the upper part and Cu9Ga4 IMC with a thin band shape on the lower part of the CuGa2 layer. CuGa2 particles showed a scallop shape, and the particle size increased without significant shape change as the reaction time increased, similar to the case of Cu6Sn5 growth. As a result of analyzing the CuGa2 growth mechanism, the time exponent was calculated to be ~3.0 in the temperature range of 120-200℃, and the activation energy was measured to be 17.7 kJ/mol.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1F1A1065957).

참고문헌

  1. F. Gray, D. A. Kramer, and J. D. Bliss, "Gallium and gallium compounds", Kirk-Othmer Encyclopedia of Chemical Technology (2000).
  2. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, "Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature", Adv. Funct. Mater., 18(7), 1097-1104 (2008). https://doi.org/10.1002/adfm.200701216
  3. J. R. Rumble, CRC handbook of chemistry and physics, CRC Press, Boca Raton, FL (2017).
  4. V. Y. Prokhorenko, V. V. Roshchupkin, M. A. Pokrasin, S. V. Prokhorenko, and V. V. Kotov, "Liquid gallium: potential uses as a heat-transfer agent", High Temperature, 38(6), 954-968 (2000). https://doi.org/10.1023/a:1004157827093
  5. R. K. Kramer, J. W. Boley, H. A. Stone, J. C. Weaver, and R. J. Wood, "Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys", Langmuir, 30(2), 533-539 (2014). https://doi.org/10.1021/la404356r
  6. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, "Eutectic gallium-indium (egain): A liquid metal alloy for the formation of stable structures in microchannels at room temperature", Adv. Funct. Mater., 18(7), 1097-1104 (2008). https://doi.org/10.1002/adfm.200701216
  7. D. Zrnic, and D. S. Swatik, "On the resistivity and surface tension of the eutectic alloy of gallium and indium", J. Alloys. Compd., 18(1), 67-68 (1969).
  8. M. D. Dickey, "Emerging applications of liquid metals featuring surface oxides", ACS. Appl. Mater. Interfaces, 6(21), 18369-18379 (2014). https://doi.org/10.1021/am5043017
  9. K. E. Spells, "The determination of the viscosity of liquid gallium over an extended nrange of temperature", Proceedings of the Physical Society (1926-1948)., 48(2), 299 (1936). https://doi.org/10.1088/0959-5309/48/2/308
  10. J. H. Kim, S. Kim, J. H. So, K. Kim, and H. J. Koo, "Cytotoxicity of Gallium-Indium Liquid Metal in Aqueous Environment", ACS. Appl. Mater. Interfaces, 10(20), 17448-17454 (2018). https://doi.org/10.1021/acsami.8b02320
  11. V. Y. Prokhorenko, V. V. Roshchupkin, M. A. Pokrasin, S. V. Prokhorenko, and V. V. Kotov, "Liquid gallium: potential uses as a heat-transfer agent", High Temperature, 38(6), 954-968 (2000). https://doi.org/10.1023/a:1004157827093
  12. T. Sawada, A. Netchaev, H. Ninokata, and H. Endo, "Gallium-cooled liquid metallic-fueled fast reactor", Prog. Nucl. Energy, 37(1-4), 313-319 (2000). https://doi.org/10.1016/S0149-1970(00)00064-0
  13. H. Ge, and J. Liu, "Keeping smartphones cool with gallium phase change material", J. Heat. Transfer, 135(5) (2013).
  14. M. D. Dickey, "Stretchable and soft electronics using liquid metals", Adv. Mater., 29(27), 1606425 (2017). https://doi.org/10.1002/adma.201606425
  15. K. Khoshmanesh, S. Y. Tang, J. Y. Zhu, S. Schaefer, A. Mitchell, K. Kalantar-Zadeh, and M. D. Dickey, "Liquid metal enabled microfluidics", Lab. Chip, 17(6), 974-993 (2017). https://doi.org/10.1039/C7LC00046D
  16. A. Tabatabai, A. Fassler, C. Usiak, and C. Majidi, "Liquid-phase gallium-indium alloy electronics with microcontact printing", Langmuir, 29(20), 6194-6200 (2013). https://doi.org/10.1021/la401245d
  17. S. K. Lin, C. L. Cho, and H. M. Chang, "Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples", J. Electron. Mater., 43(1), 204-211 (2014). https://doi.org/10.1007/s11664-013-2721-x
  18. S. K. Lin, H. M. Chang, C. L. Cho, Y. C. Liu, and Y. K Kuo, "Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits", Electron. Mater. Lett., 11(4), 687-694 (2015). https://doi.org/10.1007/s13391-015-5015-z
  19. S. W. Chen, J. M. Lin, T. C. Yang, and Y. H. Du, "Interfacial Reactions in the Cu/Ga/Co and Cu/Ga/Ni Samples", J. Electron. Mater., 48(6), 3643-3654 (2019). https://doi.org/10.1007/s11664-019-07121-w
  20. S. Liu, X. F. Tan, S. D. McDonald, Q. Gu, S. Matsumura, and K. Nogita, "Interfacial reactions between Ga and Cu-xNi (x=0, 2, 6, 10, 14) substrates and the strength of Cu-xNi/Ga/CuxNi joints", Intermetallics, 133, 107168 (2021). https://doi.org/10.1016/j.intermet.2021.107168
  21. H. Okamoto, "Au-Ga (Gold-Gallium)", J. Phase Equilib. Diffus., 34(2), 174-175 (2013). https://doi.org/10.1007/s11669-012-0178-x
  22. J. B. Li, L. N. Ji, J. K. Liang, Y. Zhang, J. Luo, C. R. Li, and G. H. Rao, "A thermodynamic assessment of the copper-gallium system", Calphad., 32(2), 447-453 (2008). https://doi.org/10.1016/j.calphad.2008.03.006
  23. M. Schaefer, R. A. Fournelle, and J. Liang, "Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control", J. Electron. Mater., 27(11), 1167-1176 (1998). https://doi.org/10.1007/s11664-998-0066-7
  24. H. K. Kim, and K. N. Tu, "Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening", Phys. Rev. B, 53(23), 16027 (1996). https://doi.org/10.1103/physrevb.53.16027