DOI QR코드

DOI QR Code

갈륨 및 갈륨 합금을 이용한 저온접합 기술 동향

Trends of Low-temperature Bonding Technologies using Gallium and Gallium Alloys

  • 홍태영 (조선대학교 용접.접합과학공학과) ;
  • 심호률 (조선대학교 용접.접합과학공학과) ;
  • 손윤철 (조선대학교 용접.접합과학공학과)
  • Hong, Teayeong (Dept. of Welding & Joining Science Engineering, Chosun University) ;
  • Shim, Horyul (Dept. of Welding & Joining Science Engineering, Chosun University) ;
  • Sohn, Yoonchul (Dept. of Welding & Joining Science Engineering, Chosun University)
  • 투고 : 2022.06.10
  • 심사 : 2022.06.29
  • 발행 : 2022.06.30

초록

최근 세계적으로 유연 전자소자 관련 기술들이 주목을 받으면서 유연소자 제작 과정에서의 성형성 및 굽힘 상태에서의 성능과 내구성 등의 문제점을 개선하기 위하여 액체 금속을 사용한 배선·접합 기술들의 개발이 요구되고 있다. 이러한 요구에 부응하여 독성이 없으면서 낮은 점도와 우수한 전기전도도를 가지는 갈륨 및 갈륨계 합금 (공정 갈륨-인듐 및 공정 갈륨-인듐-주석 등)의 액체금속을 저온 접합소재로 이용하려는 다양한 연구들이 이루어지고 있다. 본 논문에서는 갈륨 및 갈륨계 합금을 이용한 저온접합 기술의 최신 연구동향을 정리하여 소개하고자 한다. 이러한 기술들은 향후 유연 전자소자의 제조 및 전자패키지에서의 저온접합 등의 분야에서 실용화를 위한 중요한 기반기술이 될 것으로 예상된다.

Recently, as flexible electronic device-related technologies have received worldwide attention, the development of wiring and bonding technologies using liquid metals is required in order to improve problems such as formability in the manufacturing process of flexible devices and performance and durability in the bending state. In response to these needs, various studies are being conducted to use gallium and gallium-based alloys (eutectic Ga-In and eutectic Ga-In-Sn, etc.) liquid metals, with low viscosity and excellent electrical conductivity without toxicity, as low-temperature bonding materials. In this paper, the latest research trends of low-temperature bonding technology using gallium and gallium-based alloys are summarized and introduced. These technologies are expected to become important base technologies for practical use in the fields of manufacturing flexible electronic devices and low-temperature bonding in microelectronic packages in the future.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(No. 2020R1F1A1065957).

참고문헌

  1. S. Liu, K. Sweatman, S. McDonald, and K. Nogita, "Ga-Based Alloys in Microelectronic Interconnects: A Review", Materials (Basel).,11(8), 13-84 (2018).
  2. S. Liu, D. Qu, S. McDonald, Q. Gu, S. Matsumura, and K. Nogita, "Intermetallic formation mechanisms and properties in room-temperature Ga soldering", Journal of Alloys and Compounds., 826, 154221 (2020). https://doi.org/10.1016/j.jallcom.2020.154221
  3. D. Zrnic, and D. S. Swatik, "On the resistivity and surface tension of the eutectic alloy of gallium and indium", Journal of The Less Common Metals., 18, 67-68 (1969). https://doi.org/10.1016/0022-5088(69)90121-0
  4. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, "Eutectic gallium-indium (egain): A liquid metal alloy for the formation of stable structures in microchannels at room temperature", Advanced Functional Materials., 18(7), 1097-1104 (2008). https://doi.org/10.1002/adfm.200701216
  5. M. D. Dickey, "Emerging applications of liquid metals featuring surface oxides.", ACS applied materials & interfaces, 6(21), 18369-18379 (2014). https://doi.org/10.1021/am5043017
  6. S. Liu, S. McDonald, and Q. Gu et al. "Properties of CuGa2 Formed Between Liquid Ga and Cu Substrates at Room Temperature", J. Electron. Mater., 49, 128-139 (2020). https://doi.org/10.1007/s11664-019-07688-4
  7. Y. Cui, F. Liang, Z. Yang, S. Xu, X. Zhao, Y. Ding, Z. Lin, and J. Liu, "Metallic Bond-Enabled Wetting Behavior at the Liquid Ga/CuGa2 Interfaces", ACS Appl. Mater. Interfaces., 10, 9203- 9210 (2018). https://doi.org/10.1021/acsami.8b00009
  8. J. Tang, X. Zhao, J. Li, R. Guo, Y. Zhou, and J. Liu, "Gallium-Based Liquid Metal Amalgams: Transitional-State Metallic Mixtures (TransM2ixes) with Enhanced and Tunable Electrical, Thermal, and Mechanical Properties", ACS Appl. Mater. Interfaces., 9(41), 35977-35987 (2017). https://doi.org/10.1021/acsami.7b10256
  9. S. Liu, W. Yang, Y. Kawami, Q. Gu, S. Matsumura, D. Qu, S. McDonald, and K. Nogita, "Effects of Ni and Cu Antisite Substitution on the Phase Stability of CuGa2 from Liquid Ga/Cu-Ni Interfacial Reaction", ACS Appl. Mater. Interfaces., 11, 35, 32523-32532 (2019). https://doi.org/10.1021/acsami.9b10630
  10. D. Morales, N. A. Stoute, Z. Yu, D.E. Aspnes, and M. D. Dickey, "Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides", Appl. Phys. Lett., 109, 091905 (2016). https://doi.org/10.1063/1.4961910
  11. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, "Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature", Adv. Funct. Mater., 18(7), 1097-1104. (2008). https://doi.org/10.1002/adfm.200701216
  12. J. H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, "Reversibly Deformable and Mechanically Tunable Fluidic Antennas", Adv. Funct. Mater., 19, 3632-3637 (2009). https://doi.org/10.1002/adfm.200900604
  13. D. Zrnic, and D. S. Swatik, "On the resistivity and surface tension of the eutectic alloy of gallium and indium", Journal of The Less Common Metals., 18, 67-68 (1969). https://doi.org/10.1016/0022-5088(69)90121-0
  14. P. J. Geddis, L. Wu, A. M. McDonald, S. W. S. Chen, and B. R. Clements, "The Effect of Static Liquid Galinstan on Common Metals and Non-Metals at Temperatures up to 200 ℃", Canadian Journal of Chemistry., 98(12), 787-798 (2020). https://doi.org/10.1139/cjc-2020-0227
  15. T. Liu, P. Sen, and C. J. Kim, "Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices", Journal of Microelectromechanical Systems., 21(2), 443-450 (2011).
  16. T. S. Yoon, and T. S. Kim, "Thermo-Mechanical Reliability of TSV based 3D-IC", J. Microelectron. Packag. Soc., 24(1), 35-43 (2017). https://doi.org/10.6117/KMEPS.2017.24.1.035
  17. M. Motoyoshi, "Through-Silicon Via (TSV)", Proc. IEEE., 97(1), 43 (2009). https://doi.org/10.1109/JPROC.2008.2007462
  18. S. K. Lin, C. L. Cho, and H. M. Chang, "Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples", J. Electron. Mater., 43, 204-211 (2014). https://doi.org/10.1007/s11664-013-2721-x
  19. S. K. Lin, H. M. Chang, C. L. Cho, Y. C. Liu, and Y. K. Kuo, "Formation of Solid-Solution Cu-to-Cu Joints Using Ga Solder and Pt under Bump Metallurgy for Three-Dimensional Integrated Circuits", Electron. Mater. Lett., 11(4), 687-694 (2015). https://doi.org/10.1007/s13391-015-5015-z
  20. J. Froemel, M. Baum, M. Wiemer, and T. Gessner, "Low-Temperature Wafer Bonding Using Solid-Liquid Inter-Diffusion Mechanism", J. Microelectromech. Syst., 24, 1973-1980 (2015). https://doi.org/10.1109/JMEMS.2015.2455340
  21. D. Y. Lee, C. L. Kim, and Y. C. Sohn, "Formation and Growth of Intermetallic Compounds during Reactions between Liquid Gallium and Solid Nickel", Materials, 14, 5694 (2021). https://doi.org/10.3390/ma14195694
  22. B. W. Kim, and Y. C. Sohn, "Analysis of intermetallic compound formation in the reactions at liquid Ga/solid Pd interface", Surf. Interfaces, 30, 101951 (2022). https://doi.org/10.1016/j.surfin.2022.101951
  23. Z. Marinkovic, and V. Simic, "Comparative analysis of inter-diffusion in some thin film metal couples at room temperature", Thin Solid Films, 217(1-2), 26-30 (1992). https://doi.org/10.1016/0040-6090(92)90601-7
  24. H. Choi, and Y. C. Sohn, "Interfacial reactions between liquid Ga and solid Au", submitted.
  25. H. Kolb, R. Sottong, T. Dasgupta et al. "Evaluation of Detachable Ga-Based Solder Contacts for Thermoelectric Materials", J. Electron. Mater., 46, 5057-5063 (2017). https://doi.org/10.1007/s11664-017-5486-9
  26. S. Liu, X. F. Tan, Stuart D. McDonald, Q. F. Gu, S. Matsumura, and K. Nogita, "Interfacial reactions between Ga and Cu-xNi (x=0, 2, 6, 10, 14) substrates and the strength of Cu-xNi/Ga/Cu-xNi joints", Intermetallics., 133, 107168 (2021). https://doi.org/10.1016/j.intermet.2021.107168
  27. J. B. Li, L. N. Ji, J. K. Liang, Y. Zhang, J. Luo, C. R. Li, and G. H. Rao, "A thermodynamic assessment of the copper-gallium system", Calphad., 32(2), 447-453 (2008). https://doi.org/10.1016/j.calphad.2008.03.006
  28. J. S. Wang, S. Jin, W. J. Zhu, H. Dong, X. Tao, H. Liu, and Z. P. Jin, "First-principles calculations assisted thermodynamic assessment of the Pt-Ga-Ge ternary system", Calphad., 33, 561-569 (2009). https://doi.org/10.1016/j.calphad.2009.05.002
  29. S. Liu, D. Qu, S. McDonald, and K. Nogita, "The Interaction of Sn-Ga Alloys and Au Coated Cu Substrates", Solid State Phenomena., 273, 3-8 (2018). https://doi.org/10.4028/www.scientific.net/ssp.273.3
  30. M. W. M. Jones, N. W. Phillips, G. A. van Riessen, B. Abbey, D. J. Vine, Y. S. G. Nashed, S. T. Mudie, N. Afshar, R. Kirkham, B. Chen, E. Balaur, and M. D. de Jonge, "Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline", J. Synchrotron Radiat., 23, 1151-1157 (2016). https://doi.org/10.1107/S1600577516011917