DOI QR코드

DOI QR Code

2'-푸코실락토오스의 자가포식을 통한 멜라닌 감소 연구

A Study on Melanin Reduction through Autophagy by 2'-Fucosyllactose

  • 정소영 (아주대학교 응용생명공학과) ;
  • 유한준 (아주대학교 응용생명공학과) ;
  • 허효진 (아주대학교 응용생명공학과) ;
  • 이소민 (아주대학교 응용생명공학과) ;
  • ;
  • 차병선 (아주대학교 응용생명공학과) ;
  • ;
  • 이상훈 (아주대학교 응용생명공학과) ;
  • 빈범호 (아주대학교 응용생명공학과) ;
  • 이미기 (경기도경제과학진흥원) ;
  • 곽병문 (세명대학교 화장품뷰티생명공학부)
  • Jung, So Young (Department of Applied Biotechnology, Ajou University) ;
  • Yoo, Han Jun (Department of Applied Biotechnology, Ajou University) ;
  • Heo, Hyojin (Department of Applied Biotechnology, Ajou University) ;
  • Lee, So Min (Department of Applied Biotechnology, Ajou University) ;
  • Brito, Sofia (Department of Applied Biotechnology, Ajou University) ;
  • Cha, Byungsun (Department of Applied Biotechnology, Ajou University) ;
  • Lei, Lei (Department of Applied Biotechnology, Ajou University) ;
  • Lee, Sang Hun (Department of Applied Biotechnology, Ajou University) ;
  • Bin, Bum-Ho (Department of Applied Biotechnology, Ajou University) ;
  • Lee, Mi-Gi (GBSA, Gyeonggido Business and Science Accelerator) ;
  • Kwak, Byeong-Mun (School of Cosmetic Science and Beauty Biotechnology, Semyung University)
  • 투고 : 2022.05.17
  • 심사 : 2022.06.21
  • 발행 : 2022.06.30

초록

2'-fucosyllactose (2'-FL)는 사람의 모유에 가장 많이 존재하는 올리고당(human milk oligosaccharides, HMOs)으로, 장내 유용 미생물의 성장을 촉진시키고 알레르기, 염증 반응을 완화시키는 것에 도움을 준다. 다양한 긍정적 기능을 가진 2'-FL의 미백 화장품 소재로써의 가능성을 확인하고자, 본 연구를 통해 멜라닌 생성 저해 효능 및 자가포식 유도 가능성을 검토하였다. 인간 유래 멜라닌 생성 세포로 알려진 MNT-1 세포에서 독성 실험을 진행하여 40 g/L 이하에서 세포독성이 없음을 확인하였고, 동일 세포에서 20 g/L 농도로 7 일간 처리하여 멜라닌 생성량을 분석한 결과, 40% 멜라닌 생성 감소를 확인하였다. 멜라닌 생성 관련 인자 TYR 및 TYRP1의 단백질 발현량을 western blot 법을 이용하여 분석한 결과, 2'-FL 처리는 이들을 감소시켰으며, 더불어 자가포식 표지자인 microtubule-associated protein 1 light chain 3 (LC3)의 형태가 LC3-I에서 LC3-𝚷로 변환을 확인할 수 있었다. 공초점 현미경을 통해 2'-FL 처리에 따른 LC3 puncta의 증가가 확인되었다. 따라서, 2'-FL로 활성화된 자가포식이 TYR 및 TYRP1 단백질 발현량을 저해시킴으로서 멜라닌 생성을 감소시키는 것으로 시사된다. 결론적으로 2'-FL은 자가포식을 유도하여 멜라닌 생성이 억제됨이 확인되어 미백 화장품 소재로써의 가능성이 기대된다.

2'-fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide (HMO) present in breast milk, promoting the growth of beneficial microorganisms in the gut and aiding in the relief of allergic and inflammatory reactions. In this study, the anti-melanogenic effects of 2'-FL, and its potential for application in whitening cosmetics, were evaluated. MTT assay was performed on MNT-1 cells, human-derived melanocytes. 2'-FL was treated and replaced at 48 h intervals for 7 days, and it was confirmed that there was no cytotoxicity at 20 g/L or less, while a 40% reduction in melanin production was also observed. Western blot analysis of TYR and TYRP1, factors involved in melanogenesis, revealed that 2'-FL treatment reduced their expression levels. In addition, 2'-FL application and observation of the autophagy marker microtubule-associated protein 1 light chain 3 (LC3) revealed it was converted from LC3-I to LC3-𝚷, indicating increased autophagy. Likewise, confocal microscopy revealed an increase in LC3 puncta after 2'-FL treatment. Therefore, it is suggested that 2'-FL-mediated activation of autophagy reduces melanogenesis by inhibiting the expression levels of TYR and TYRP1 proteins. In conclusion, it has been confirmed that 2'-FL induces autophagy and suppresses melanin production, so its potential as a whitening cosmetic material is expected.

키워드

과제정보

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2019005607 to B. H. B.), by the Ajou University Research Fund (to B. H. B.), and by the Gyeonggido Business & Science Accelerator (GBSA).

참고문헌

  1. L. Bode, The functional biology of human milk oligosaccharides, Early Hum. Dev., 91(11), 619 (2015). https://doi.org/10.1016/j.earlhumdev.2015.09.001
  2. E. Castanys-Munoz, M. J. Martin, and P. A. Prieto, 2'-Fucosyllactose an abundant, genetically determined soluble glycan present in human milk, Nutr. Rev., 71(12), 773 (2013). https://doi.org/10.1111/nure.12079
  3. J. T. Smilowitz, A. Osullivan, D. Barile, J. B. German, B. Lonnerdal, and C. M. Slupsky , The human milk metabolome reveals diverse oligosaccharide profiles, NUTR., 143(11), 1709 (2013). https://doi.org/10.3945/jn.113.178772
  4. F. Baumgartner, L. Seitz, G. A. Sprenger, and C. Albermann, Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2'-fucosyllactose, Microb. Cell Fact., 12, DOI: 10.1186/1475-2859-12-40 (2013).
  5. L. Xiao, T. Leusinkmuis, N. Kettelarij, I. V. Ark, B. Blijenberg, N. A. Hesen, B. Vantland, B. Stahl, S. A. Overbeek, J. Garssen, G. Folkerts, and B. Van't Land, Human milk oligosaccharide 2'-fucosyllactose improves innate and adaptive immunity in an influenza-specific murine vaccination model, Front. Immunol., 9, 452 (2018). https://doi.org/10.3389/fimmu.2018.00452
  6. Z. T. Yu, N. N. Nanthakumar, and D. S. Newburg, The human milk oligosaccharide 2'-fucosyllactose quenches campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa, NUTR., 146(10), 1980 (2016). https://doi.org/10.3945/jn.116.230706
  7. T. Eiwegger, B. Stahl, J. Schmitt, G. Boehm, M. Gerstmayr, J. Pichler, and Z. Szepfalusi, Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro, Pediatr., 56(4), 536 (2004).
  8. D. Vanberlo, A. E. Wallinga, F. A. vanacker, and D. J. Delsing, Safety assessment of biotechnologically produced 2'-Fucosyllactose a novel food additive, Food. Chemi. Toxicol., 118, 84 (2018). https://doi.org/10.1016/j.fct.2018.04.049
  9. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, Autophagy fights disease through cellular self-digestion, Nature, 451(7182), 1069 (2008). https://doi.org/10.1038/nature06639
  10. L. Yu, C. K. Mcphee, L. Zheng, G. A. Mardones, Y. Rong, J. Peng, N. Mi, Y. Zhao, Z. Liu, F. Wan, D. W. Hailey, V. Oorschot, J. Klumperman, E. H. Baehrecke, and M. J. Lenardo, Termination of autophagy and reformation of lysosomes regulated by mTOR, Nature, 465(7300), 942 (2010). https://doi.org/10.1038/nature09076
  11. N. Mizushima and M. Komatsu, Autophagy renovation of cells and tissues, Cell, 147(4), 728 (2011). https://doi.org/10.1016/j.cell.2011.10.026
  12. B. Levine, N. Mizushima, and H. W. Virgin, Autophagy in immunity and inflammation, Nature, 469(7330), 323 (2011). https://doi.org/10.1038/nature09782
  13. J. Lee, S. Giordanoa, and J. Zhang, Autophagy mitochondria and oxidative stress: cross-talk and redox signalling, Biochem., 441(2), 523 (2012). https://doi.org/10.1042/BJ20111451
  14. X. Sui, R. Chen, Z. Wang, Z. Huang, N. Kong, M. Zhang, W. Han, F. Lou, J. Yang, Q. Zhang, X. Wang, C. He, and H. Pan, Autophagy and chemotherapy resistance a promising therapeutic target for cancer treatment, Cell Death. Dis., 4(10), e838 (2013). https://doi.org/10.1038/cddis.2013.350
  15. D. Murase, A. Hachiya, K. Takano, R. Hicks, M. O. Visscher, T. Kitahara, T. Hase, Y. Takema, and T. Yoshimori, Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes, J. Invest. Dermatol., 133(10), 2416 (2013). https://doi.org/10.1038/jid.2013.165
  16. K. H. Kim and M. S. Lee, Autophagy-a key player in cellular and body metabolism, Nat. Rev. Endocrinol., 10(6), 322 (2014). https://doi.org/10.1038/nrendo.2014.35
  17. I. Tanida, T. Ueno, and E. Kominami, LC3 and Autophagy, ed. V. Deretic, 445, 77, Humana Press, Totowa, New Jersey. (2008).
  18. J. Martinez, J. Almendinger, A. Oberst, R. Ness, C. P. Dillon, P. Fitzgerald, M. O. Hengartner, and D. R. Green, Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells, Proc. Nati. Acad. Sci., 108(42), 17396 (2011). https://doi.org/10.1073/pnas.1113421108
  19. H. Ho and A. K. Ganesan, The pleiotropic roles of autophagy regulators in melanogenesis, Pigment Cell Melanoma Res., 24(4), 595 (2011). https://doi.org/10.1111/j.1755-148X.2011.00889.x
  20. J. Y. Kim, E. J. Lee, Y. Ahn, S Park, Y. J. Bae, T. G. Kim, and S. H. Oh, Cathepsin L, a Target of hypoxia-inducible factor-1-α, is involved in melanosome degradation in melanocytes, Int. J. Mol. Sci., 22(16), 8596 (2021). https://doi.org/10.3390/ijms22168596
  21. H. J. Park, D. S. Jo, J. E. Bae, N. Y. Park, J. B. Kim, and D. H. Cho, Ursolic acid inhibits pigmentation by increasing melanosomal autophagy in B16F1 cells, Biochem. Biophys. Res. Commun., 531(2), 209 (2020). https://doi.org/10.1016/j.bbrc.2020.07.125
  22. D. Murase, A. Kusaka-Kikushima, A. Hachiya, R. Fullenkamp, A. Stepp, A. Imai, and T. Yoshimori, Autophagy declines with premature skin aging resulting in dynamic alterations in skin pigmentation and epidermal differentiation, Int. J. Mol. Sci., 21(16), 5708 (2020). https://doi.org/10.3390/ijms21165708
  23. S. H. Lee, I. H. Bae, E. S. Lee, H. J. Kim, J. S. Lee, and C. S. Lee, Glucose exerts an anti-melanogenic effect by indirect inactivation of tyrosinase in melanocytes and a human skin equivalent, Int. J. Mol. Sci., 21(5), 1736 (2020). https://doi.org/10.3390/ijms21051736
  24. C. S. Lee, H. S. Baek, I. H. Bae, S. J. Choi, Y. J. Kim, J. H. Lee, and J. W. Kim, Depigmentation efficacy of galacturonic acid through tyrosinase regulation in B16 murine melanoma cells and a three-dimensional human skin equivalent, Clin. Exp. Dermatol., 43(6), 708 (2018). https://doi.org/10.1111/ced.13557
  25. K. Kleszczynski, T. K. Kim, B. Bilska, M. Sarna, K. Mokrzy nski, A. Stegemann, E. Py za, R. J. Reiter, K. Steinbrink, M. Bohm, and A. T. Slominski, J. Pineal. Res., 67(4), e12610 (2019).
  26. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65(1), 55 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
  27. M. Berneburg, H. Plettengerg, and J. Krutmann, Photoaging of human skin, Photodermatol. Photoimmunol. Photomed., 16(6), 239 (2000). https://doi.org/10.1034/j.1600-0781.2000.160601.x
  28. G. E. Costin and V. J. Hearing, Human skin pigmentation: Melanocytes modulate skin color in response to stress, FASEB. J., 21, 976 (2007). https://doi.org/10.1096/fj.06-6649rev
  29. R. Saternus, S. Pilz, S. Graber, M. Kleber, W. Marz, T. Vogt, and J. Reichrath, A closer look at evolution variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25 (OH) D serum concentration, Int. J. Endocrinol., 156(1), 39 (2015). https://doi.org/10.1210/en.2014-1238