DOI QR코드

DOI QR Code

Integrated Hybrid Device for High-Efficiency Size-Tunable Particle Separation

고효율 크기 가변적 입자 분리를 위한 통합 하이브리드 소자

  • Choo, Seung Hee (College of Life Sciences and Bio engineering, Incheon National University) ;
  • Park, Jion (Department of Song-do Bio Engineering, Incheon Jaeneung University) ;
  • Kim, Tae Eun (Artificial Intelligent-Bio Research Center, Incheon Jaeneung University) ;
  • Gang, Tae Gyeoung (Department of Song-do Bio Engineering, Incheon Jaeneung University) ;
  • An, Jun Seok (Department of Song-do Bio Engineering, Incheon Jaeneung University) ;
  • Oh, Gayeong (Department of Song-do Bio Engineering, Incheon Jaeneung University) ;
  • Kim, Yeojin (Department of Song-Do Bio Life Engineering, Incheon Jaeneung University) ;
  • Park, Kyu Been (Department of Song-Do Bio Life Engineering, Incheon Jaeneung University) ;
  • Park, Chaewon (Department of Song-Do Bio Life Engineering, Incheon Jaeneung University) ;
  • Lee, Minjeong (Department of Song-Do Bio Life Engineering, Incheon Jaeneung University) ;
  • Lim, Hyunjung (Artificial Intelligent-Bio Research Center, Incheon Jaeneung University) ;
  • Nam, Jeonghun (Department of Song-do Bio Engineering, Incheon Jaeneung University)
  • 추승희 (인천대학교 생명공학부 나노바이오전공) ;
  • 박지온 (인천재능대학교 송도바이오과) ;
  • 김태은 (인천재능대학교 인공지능바이오연구소) ;
  • 강태경 (인천재능대학교 송도바이오과) ;
  • 안준석 (인천재능대학교 송도바이오과) ;
  • 오가영 (인천재능대학교 송도바이오과) ;
  • 김여진 (인천재능대학교 송도바이오생명과) ;
  • 박규빈 (인천재능대학교 송도바이오생명과) ;
  • 박채원 (인천재능대학교 송도바이오생명과) ;
  • 이민정 (인천재능대학교 송도바이오생명과) ;
  • 임현정 (인천재능대학교 인공지능바이오연구소) ;
  • 남정훈 (인천재능대학교 송도바이오과)
  • Received : 2022.06.07
  • Accepted : 2022.06.13
  • Published : 2022.06.30

Abstract

Cell separation from a heterogenous mixture sample is an essential process for downstream analysis in biological, chemical, and clinical applications. This study demonstrates an integrated hybrid device of the viscoelastic focusing in a straight rectangular channel and subsequent size-based separation using acoustophoresis to attain high efficiency and separation tunability. For particle pre-alignment in a viscoelastic fluid, the flow rate higher than 10 μl/min was required. Surface acoustic wave-based lateral migration of particles with different sizes (13 and 27 ㎛) was examined at various applied voltages and flow rate conditions. Therefore, the flow rate of 100 μl/min and the applied voltage of 20 Vpp can be used for size-based particle separation.

Keywords

Acknowledgement

이 논문은(는) 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1014460).

References

  1. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML. Droplet microfluidic technology for single-cell highthroughput screening. Proc. Nat. Aca. Sci. 2009;106(34):14195-14200. https://doi.org/10.1073/pnas.0903542106
  2. Huang NT, Chen W, Oh BR, Cornell TT, Shanley TP, Fu J, Kurabayashi K. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip. 2012;12:4093-4101. https://doi.org/10.1039/c2lc40619e
  3. Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst. 2018;143:2936-2970. https://doi.org/10.1039/c7an01979c
  4. Shields IV CW, Reyes CD, Lopez GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip, 2015;15:1230-1249. https://doi.org/10.1039/C4LC01246A
  5. Barret LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ. Dielectrophoretic Manipulation of Particles and Cells Using Insulating Ridges in Faceted Prism Microchannels. Anal. Chem. 2005;77(21):6798-6804. https://doi.org/10.1021/ac0507791
  6. Vahey MD, Volman J. An equilibrium method for continuous- flow cell sorting using dielectrophoresis. Anal. Chem. 2008;80(9):3135-3143. https://doi.org/10.1021/ac7020568
  7. Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang X. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip, 2011;11:3449-3457. https://doi.org/10.1039/c1lc20270g
  8. Lai JJ, Nelson KE, Nash MA, Hoffman S, Yager P, Stayton PS. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip, 2009;9:1997-2002. https://doi.org/10.1039/b817754f
  9. Leake KD, Phillips BS, Yuzvinsky TD, Hawkins AR, Schmidt H. Optical particle sorting on an optofluidic chip. Opt. Exp. 2013;21(26):32605-32610. https://doi.org/10.1364/OE.21.032605
  10. Minzioni P, Osellame R, Sada C, Zhao S, Omenetto F, Gylfason KB, Haraldsson T, Zhang Y, Ozcan A, Wax A. Roadmap for optofluidics. J. Opt. 2017;19:093003. https://doi.org/10.1088/2040-8986/19/9/093003
  11. Nam J, Lim H, Kim D, Shin S. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip, 2011;11:3361-3364. https://doi.org/10.1039/c1lc20346k
  12. Shi J, Mao X, Ahmed D, Colleti A, Huang TJ. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip, 2008;8:221-223. https://doi.org/10.1039/b716321e
  13. Shi J, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip, 2009;9:2890-2895. https://doi.org/10.1039/b910595f
  14. Nam J, Lim H, Kim C, Kang JY, Shin S. Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics, 2012;6(2):024120. https://doi.org/10.1063/1.4718719
  15. Zhou J, Giridhar PV, Kasper S, Papautsky I. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip, 2013;13:1919-1929. https://doi.org/10.1039/c3lc50101a
  16. Warkiani ME, Tay AKP, Khoo BL, Xiaofeng X, Han J, Lim CT. Malaria detection using inertial microfluidics. Lab Chip, 2015;15:1101-1109. https://doi.org/10.1039/C4LC01058B
  17. Hur SC, Brinckerhoff TZ, Walthers CM, Dunn JC, Carlo DD. Label-Free Enrichment of Adrenal Cortical Progenitor Cells Using Inertial Microfluidics. Plos One, 2012;7(10):e46550. https://doi.org/10.1371/journal.pone.0046550
  18. Huang LR, Cox EC, Austin RH, Sturm JC. Continuous Particle Separation Through Deterministic Lateral Displacement. Science, 2004;304(5673):987-990. https://doi.org/10.1126/science.1094567
  19. Choi S, Park JK. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip, 2007;7:890-897. https://doi.org/10.1039/b701227f
  20. Hsu CH, Carlo DD, Chen C, Irimia D, Toner M. Microvortex for focusing, guiding and sorting of particles. Lab Chip, 2008;8:2128-2134. https://doi.org/10.1039/b813434k
  21. Ho B, Leal L. Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid, Mech. 1976;76(4):783. https://doi.org/10.1017/S002211207600089X
  22. Huang P, Feng J, Hu HH, Joseph DD. Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech. 1997;343:73. https://doi.org/10.1017/S0022112097005764
  23. Karimi A, Yazdi S, Ardekani A. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics, 2013;7:021501. https://doi.org/10.1063/1.4799787
  24. Leshansky AM, Branky A, Korin N, Dinnar U. Tunable Nonlinear Viscoelastic "Focusing" in a Microfluidic Device. Phys. Rev, Lett. 2007;98:234501. https://doi.org/10.1103/PhysRevLett.98.234501
  25. Nam J, Jang WS, Lim CS. Non-electrical powered continuous cell concentration for enumeration of residual white blood cells in WBC-depleted blood using a viscoelastic fluid. Talanta, 2019;197:12-19. https://doi.org/10.1016/j.talanta.2018.12.102
  26. Kang K, Lee SS, Hyun K, Lee SJ, Kim JM. DNA-based highly tunable particle focuser. Nat. Comm. 2013;4:2567. https://doi.org/10.1038/ncomms3567
  27. Lim EJ, Ober, TJ, Edd JF, Desai SP, Neal D, Bong KW, Doyle PS, McKinley GH, Toner M. Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Comm. 2014;5:4120. https://doi.org/10.1038/ncomms5120
  28. Lee DJ, Brenner H, Youn JR, Song YS. Multiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids. Sci. Rep. 2013;3:3258. https://doi.org/10.1038/srep03258
  29. Li D, Lu X, Xuan X. Viscoelastic Separation of Particles by Size in Straight Rectangular Microchannels: A Parametric Study for a Refined Understanding. Anal. Chem. 2016;88(24):12303-12309. https://doi.org/10.1021/acs.analchem.6b03501
  30. Nam J, Namgung B, Lim CT, Bae JE, Leo HL, Cho KS, Kim S. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid. J. Chrom. A, 2015;1406:244-250. https://doi.org/10.1016/j.chroma.2015.06.029
  31. Nam J, Lim H, Kim D, Shin S. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip, 2011;11:3361-3364. https://doi.org/10.1039/c1lc20346k
  32. Lu X, Xuan X. Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation. Anal. Chem. 2015;87(22):11523-11530. https://doi.org/10.1021/acs.analchem.5b03321
  33. Nam J, Jang WS, Lim CS. Viscoelastic Separation and Concentration of Fungi from Blood for Highly Sensitive Molecular Diagnostics, Sci. Rep. 2019;9:3067. https://doi.org/10.1038/s41598-019-39175-5
  34. Nam J, Shin Y, Tan JKS, Lim YB, Lim CT, Kim S. Highthroughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection. Lab Chip, 2016;16:2086-2092. https://doi.org/10.1039/C6LC00162A
  35. Nam J. Tan JKS, Khoo BL, Namgung B, Leo HL, Lim CT, Kim S. Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow. Biomicrofluidics, 2015;9(6):064117. https://doi.org/10.1063/1.4938389
  36. Luong TD, Nguyen NT. Surface Acoustic Wave Driven Microfluidics - A Review. Micro Nanosys. 2010;2(3):217-225. https://doi.org/10.2174/1876402911002030217
  37. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. Continuous particle separation in a microfluidic channelvia standing surface acoustic waves (SSAW). Lab Chip, 2009;9:3354-3359. https://doi.org/10.1039/b915113c
  38. Giudice FD, Madadi H, Villone MM, D'Avino G, Cusano AM, Vecchione R, Ventre M, Maffettone PL, Netti PA. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab Chip, 2015;15:1912-1922. https://doi.org/10.1039/c5lc00106d
  39. Kim MJ, Lee DJ, Youn JR, Song YS. Two step label free particle separation in a microfluidic system using elasto-inertial focusing and magnetophoresis. RSC Adv. 2016;6:32090-32097. https://doi.org/10.1039/c6ra03146c
  40. Wang K, Zhou W, Lin Z, Cai F, Li F, Wu J, Meng L, Niu L, Zheng H. Sorting of tumour cells in a microfluidic device by multi-stage surface acoustic waves. Sens. Actu. B: Chem. 2018;258:1174-1183. https://doi.org/10.1016/j.snb.2017.12.013
  41. Xiang N, Wang J, Li Q, Han Y, Huang D, Ni Z. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Anal. Chem. 2019;91(15):10328-10334. https://doi.org/10.1021/acs.analchem.9b02863
  42. Nam J, Kim JY, Lim CS. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves). AIP Adv. 2017;7: 015314. https://doi.org/10.1063/1.4975397
  43. Nam J. Lim CS. A conductive liquid-based surface acoustic wave device. Lab Chip, 2016;16:3750-3755. https://doi.org/10.1039/C6LC00827E
  44. Tan MK, Tjeung R, Ervin H, Yeo LY, Friend J. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves. Appl. Phys. Lett. 2009;95:134101. https://doi.org/10.1063/1.3238313
  45. Gao Y, Wu M, Lin Y, Xu J. Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. Micromachines, 2020;11(10):921. https://doi.org/10.3390/mi11100921
  46. Nam J, Jang WS, Lim CS. Micromixing using a conductive liquid-based focused surface acoustic wave (CL-FSAW). Sens. Actu. B: Chemical, 2018;258:991-997. https://doi.org/10.1016/j.snb.2017.11.188
  47. Lim H, Back SM, Hwang MH, Lee DH, Choi H, Nam J. Sheathless High-Throughput Circulating Tumor Cell Separation Using Viscoelastic non-Newtonian Fluid. Micromachines, 2019;10(7):462. https://doi.org/10.3390/mi10070462