DOI QR코드

DOI QR Code

Improvement of the Mechanical Property and Corrosion Resistivity of the Ni-/Fe-based Hybrid Coating Layer using High-velocity Oxygen Fuel Spraying by Heat Treatment

열처리를 통한 Ni/Fe계 하이브리드 용사 코팅층의 기계적 특성 및 내식성 향상

  • Kim, Jungjoon (School of Materials Science and Engineering, Kookmin University) ;
  • Lee, Yeonjoo (School of Materials Science and Engineering, Kookmin University) ;
  • Kim, Song-Yi (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Jong-Jae (Division of Technical Research, Hankook Coating) ;
  • Kim, Jae-hun (School of Materials Science and Engineering, Kookmin University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Lim, Hyunkyu (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Min-Ha (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Hwi-Jun (Smart liquid processing R&D Department, Korea Institute of Industrial Technology) ;
  • Choi, Hyunjoo (School of Materials Science and Engineering, Kookmin University)
  • 김정준 (국민대학교 신소재공학부) ;
  • 이연주 (국민대학교 신소재공학부) ;
  • 김송이 (한국생산기술연구원 산업소재공정연구부문) ;
  • 이종재 (한국코팅) ;
  • 김재헌 (국민대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부) ;
  • 임현규 (한국생산기술연구원 산업소재공정연구부문) ;
  • 이민하 (한국생산기술연구원 산업소재공정연구부문) ;
  • 김휘준 (한국생산기술연구원 스마트액상성형연구부문) ;
  • 최현주 (국민대학교 신소재공학부)
  • Received : 2022.06.14
  • Accepted : 2022.06.28
  • Published : 2022.06.28

Abstract

Novel Ni- and Fe-based alloys are developed to impart improved mechanical properties and corrosion resistance. The designed alloys are manufactured as a powder and deposited on a steel substrate using a high-velocity oxygen-fuel process. The coating layer demonstrates good corrosion resistance, and the thus-formed passive film is beneficial because of the Cr contained in the alloy system. Furthermore, during low-temperature heat treatment, factors that deteriorate the properties and which may arise during high-temperature heat treatment, are avoided. For the heattreated coating layers, the hardness increases by up to 32% and the corrosion resistance improves. The influence of the heat treatment is investigated through various methods and is considered to enhance the mechanical properties and corrosion resistance of the coating layer.

Keywords

Acknowledgement

This research was financially supported from the Civil-Military Technology cooperation program (No.18-CM-MA-15) and by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (P0006837)

References

  1. N. Abu-warda, L. Tomas, A. Lopez and M. Utrilla: Surf. Coat. Technol., 418 (2021) 127277. https://doi.org/10.1016/j.surfcoat.2021.127277
  2. T. Hussain, T. Dudziak, N. Simms and J. Nicholls: J. Therm. Spray Technol., 22 (2013) 797. https://doi.org/10.1007/s11666-013-9887-x
  3. S. Paul and M. Harvey: J. Therm. Spray Technol., 22 (2013) 316. https://doi.org/10.1007/s11666-012-9820-8
  4. M. Oksa and J. Metsajoki: J. Therm. Spray Technol., 24 (2015) 436. https://doi.org/10.1007/s11666-014-0192-0
  5. A. Syed, N. Simms and J. Oakey: Fuel, 101 (2012) 62. https://doi.org/10.1016/j.fuel.2011.03.010
  6. Y. Kawahara: J. Therm. Spray Technol., 16 (2007) 202. https://doi.org/10.1007/s11666-006-9012-5
  7. S.-H. Lee, N. J. Themelis and M. J. Castaldi: J. Therm. Spray Technol., 16 (2007) 104. https://doi.org/10.1007/s11666-006-9005-4
  8. K. Yamada, Y. Tomono, J. Morimoto, Y. Sasaki and A. Ohmori: Vacuum, 65 (2002) 533. https://doi.org/10.1016/S0042-207X(01)00468-7
  9. N. Folkeson, J. Pettersson, C. Pettersson, L.G. Johansson, E. Skog, B.-A. Andersson, S. Enestam, J. Tuiremo, A. Jonasson and B. Heikne: Materials Science Forum, Trans Tech Publ, (2008) 289.
  10. S. Karlsson, L.-E. Amand and J. Liske: Fuel, 139 (2015) 482. https://doi.org/10.1016/j.fuel.2014.09.007
  11. N. Singh, S. Singh, M. Kumar, M. Kaur, H. Singh and S. Sarkar: IOP Conference Series: Materials Science and Engineering, IOP Publishing, (2019) 012021.
  12. S.-Y. Chen, G.-Z. Ma, H.-D. Wang, P.-F. He, H.-M. Wang and M. Liu: Surf. Coat. Technol., 344 (2018) 43. https://doi.org/10.1016/j.surfcoat.2018.02.073
  13. C. Lyphout, P. Nylen and L. G. Ostergren: J. Therm. Spray Technol., 21 (2012) 86. https://doi.org/10.1007/s11666-011-9689-y
  14. B.-Y. Choi, J. Liang and W. Gao: Met. Mater. Int., 11 (2005) 499. https://doi.org/10.1007/BF03027500
  15. R. Karmakar, P. Maji and S. K. Ghosh: Met. Mater. Int., 27 (2021) 2134. https://doi.org/10.1007/s12540-020-00872-w
  16. J. Y. Park, S. J. Yang, Y. G. Jin, C. R. Park, G. H. Kim and H. N. Han: Met. Mater. Int., 20 (2014) 1037. https://doi.org/10.1007/s12540-014-6006-6
  17. J. Jeon, N. Seo, J. J. Lee, S. B. Son and S.-J. Lee: J. Powder Mater., 28 (2021) 478. https://doi.org/10.4150/KPMI.2021.28.6.478
  18. J. K i m, S.-Y. K i m, J .-J. L ee, S.-J. Lee, H . Li m, M.-H. Lee, H.-J. Kim and H. Choi: J. Powder Mater., 28 (2021) 483. https://doi.org/10.4150/KPMI.2021.28.6.483
  19. M. Oksa, E. Turunen, T. Suhonen, T. Varis and S.-P. Hannula: Coatings, 1 (2011) 17. https://doi.org/10.3390/coatings1010017
  20. T. Sidhu, S. Prakash and R. Agrawal: Mater. Sci., 41 (2005) 805. https://doi.org/10.1007/s11003-006-0047-z
  21. T. Sundararajan, S. Kuroda, T. Itagaki and F. Abe: ISIJ Int., 43 (2003) 104. https://doi.org/10.2355/isijinternational.43.104
  22. J. Hruska, J. Mlnarik and J. Cizner: Coatings, 12 (2022) 116. https://doi.org/10.3390/coatings12020116
  23. M. Oksa, P. Auerkari, J. Salonen and T. Varis: Fuel Process. Technol., 125 (2014) 236. https://doi.org/10.1016/j.fuproc.2014.04.006
  24. J. Guilemany, J. Miguel, S. Vizcaino, C. Lorenzana, J. Delgado and J. Sanchez: Surf. Coat. Technol., 157 (2002) 207. https://doi.org/10.1016/S0257-8972(02)00148-2
  25. G. Prashar, H. Vasudev and L. Thakur: Surf. Topogr.: Metrol. Prop., 9 (2021) 043002. https://doi.org/10.1088/2051-672X/ac3a52
  26. S. Kumar, A. Handa, V. Chawla, N. K. Grover and R. Kumar: Surf. Eng., 37 (2021) 833. https://doi.org/10.1080/02670844.2021.1924506
  27. F. Ghadami and A. S. R. Aghdam: Thin Solid Films, 678 (2019) 42. https://doi.org/10.1016/j.tsf.2019.02.019
  28. C. Li, H. Wang, J. Ding, S. Wang, J. Li and S. Kou: Surf. Eng., 37 (2021) 590. https://doi.org/10.1080/02670844.2020.1759936
  29. V. P. S. Sidhu, K. Goyal and R. Goyal: Anti-Corros. Methods Mater., 64 (2017) 499. https://doi.org/10.1108/ACMM-08-2016-1703
  30. J.-C. Chen, H. Si, W.-S. Zhan, B.-G. Shen and J.-G. Zhao: Acta Phys. Sin., 34 (1985) 1516. https://doi.org/10.7498/aps.34.1516
  31. S.-J. Oh and J.-B. Lee: J. Surf. Sci. Eng., 40 (2007) 82.
  32. M. I. Abdulsalam: Corrosion Sci., 47 (2005) 1336. https://doi.org/10.1016/j.corsci.2004.08.001
  33. M. Vankeerberghen, M. Abdulsalam, H. Pickering and J. Deconinck: J. Electrochem. Soc., 150 (2003) B445. https://doi.org/10.1149/1.1598963
  34. L. Jacobo, R. Garcia-Hernandez, V. Lopez-Morelos and A. Contreras: Met. Mater. Int., 27 (2021) 3750. https://doi.org/10.1007/s12540-020-00805-7
  35. D. Han, K. Gizem, S. Choi, S. Cho and Y. Ko: Trans. Mater. Process., 30 (2021) 301. https://doi.org/10.5228/KSTP.2021.30.6.301