DOI QR코드

DOI QR Code

A study of the chromosome number and genome size of the rare species Rhododendron keiskei var. hypoglaucum in Korea

  • CHOI, Bokyung (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University) ;
  • KIM, Hyeonjin (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University) ;
  • BYUN, Hye-Joo (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University) ;
  • GANG, Geun-Hye (Plant Conservation Center, Korea National Park Research Institute) ;
  • LEE, Yongsoon (Department of Biology Education, Kongju National University) ;
  • MYEONG, Hyeon-Ho (Korea National Park Research Institute) ;
  • SO, Soonku (Plant Conservation Center, Korea National Park Research Institute) ;
  • JANG, Tae-Soo (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University)
  • 투고 : 2022.06.03
  • 심사 : 2022.06.21
  • 발행 : 2022.06.30

초록

Rhododendron keiskei var. hypoglaucum (Ericaceae) was recently reported in Korea, with a disjunct distribution on the southern islands of the Korean Peninsula. Although chromosome numbers and ploidy variations are important traits in angiosperms, gaining a clear understanding the cytological features of Rhododendron has been hampered by the small size of its chromosomes. We herein report the chromosome number, karyotype structure, and genome size of R. keiskei var. hypoglaucum for the first time. The chromosome number of the investigated plants was 2n = 26 with x = 13 as the base chromosome number, which is the one of the frequently encountered base chromosome numbers in Rhododendron. The karyotype of R. keiskei var. hypoglaucum is composed of metacentric and submetacentric chromosomes similar in length, which ranged from 1.39 to 2.40 ㎛. The DNA 1C-value in all examined accessions was small, ranging from 0.63 to 0.65 pg, further supporting the stable genome size in Rhododendron. These comprehensive cytological results provide a framework for detailed molecular, cytogenetic, and phylogenomic analyses that can be used to interpret the slow species diversification rate in Rhododendron.

키워드

과제정보

The authors would like to thank Prof. Hanna WeissSchneeweiss and Dr. Eva M. Temsch (University of Vienna) for kindly providing the seeds of the reference standard used in genome size estimation. We are also very grateful for Soyun Won at Dadohaehaesang National Park of Korea for their kind help with field survey. This work was supported by grants from the Korean National Park Research Institute, grant number NPRI 2021-09.

참고문헌

  1. Ammal, E. K. 1950. Polyploidy in the genus Rhododendron. The Rhododenron Year Book 5: 92-96.
  2. Agudo, A. B., R. Torices, J. Loureiro, S. Castro, M. Castro and I. Alvarez. 2019. Genome size variation in a hybridizing diploid species complex in Anacyclus (Asteraceae: Anthemideae). International Journal of Plant Sciences 180: 374-385. https://doi.org/10.1086/703127
  3. Atkinson, R., K. Jong and G. Argent. 2000. Chromosome numbers of some tropical Rhododendrons (section Vireya). Edinburgh Journal of Botany 57: 1-7. https://doi.org/10.1017/s0960428600000019
  4. Becher, H., R. F. Powell, M. R. Brown, C. Metherell, J. Pellicer, I. J. Leitch and A. D. Twyford. 2021. The nature of intraspecific and interspecific genome size variation in taxonomically complex eyebrights. Annals of Botany 128: 639-651. https://doi.org/10.1093/aob/mcab102
  5. Bennett, M. D., P. Bhandol and I. J. Leitch. 2000. Nuclear DNA amounts in angiosperms and their modern uses-807 new estimates. Annals of Botany 86: 859-909. https://doi.org/10.1006/anbo.2000.1253
  6. Bou Dagher-Kharrat, M., N. Abdel-Samad, B. Douaihy, M. Bourge, A. Fridlender, S. Siljak-Yakovlev and S. C. Brown. 2013. Nuclear DNA C-values for biodiversity screening: Case of the Lebanese flora. Plant Biosystems 147: 1228-1237. https://doi.org/10.1080/11263504.2013.861530
  7. Chang, C.-S. 2007. Ericaceae Juss. In The Genera of Vascular Plants of Korea. Park. C. W. (ed.), Academy Publishing Co., Seoul. Pp. 464-472.
  8. Choi, B., S. Yang, J.-H. Song and T.-S. Jang. 2019. Karyotype and genome size variation in Ajuga L. (Ajugoideae-Lamiaceae). Nordic Journal of Botany 37: e02337.
  9. Choi, B., H. Weiss-Schneeweiss, E. M. Temsch, S. So, H.-H. Myeong and T.-S. Jang. 2020. Genome size and chromosome number evolution in Korean Iris L. species (Iridaceae Juss.). Plants 9: 1284. https://doi.org/10.3390/plants9101284
  10. Choi, B., G.-H. Gang, H. Kim, H. Byun, M. Kwak, S. So, H.-H. Myeong and T.-S. Jang. 2021. Cytological study of Cypripedium japonicum Thunb. (Orchidaceae Juss.): An endangered species from Korea. Plants 10: 1978. https://doi.org/10.3390/plants10101978
  11. Choi, Y., B. Choi and T.-S. Jang. 2022. New chromosome counts in Juncus (Juncaceae) taxa from Korea. Cytologia (in press).
  12. Chung, K.-S. and H.-T. Im. 2020. Chromosome number report of three Carex sect. Mitratae taxa (Cyperaceae) in Korea. Korean Journal of Plant Taxonomy 50: 361-367. https://doi.org/10.11110/kjpt.2020.50.3.361
  13. Chung, K.-S. and G. Y. Chung. 2021. Chromosome numbers of eight Carex taxa in Korea (Cyperaceae). Korean Journal of Plant Taxonomy 51: 192-197. https://doi.org/10.11110/kjpt.2021.51.3.192
  14. Emadzade, K., T.-S. Jang, J. Macas, A. Kovarik, P. Novak, J. Parker and H. Weiss-Schneeweiss. 2014. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Annals of Botany 114: 1597-1608. https://doi.org/10.1093/aob/mcu178
  15. Fang, M. Y., R. C. Fang, M. Y. He, L. C. Hu, H. P. Yang and D. F. Chamberlain. 2005. Rhododendron. In Flora of China, Vol. 14. Wu, Z. Y. and P. H. Raven (eds.), Science Press, Beijing and Missouri Botanical Garden, St. Louis, MO. Pp. 260-455.
  16. Greilhuber, J. 2005. Intraspecific variation in genome size in angiosperms: Identifying its existence. Annals of Botany 95: 91-98. https://doi.org/10.1093/aob/mci004
  17. Greimler, J., E. M. Temsch, Z. Xue, H. Weiss-Schneeweiss, P. Volkova, M. Peintinger, P. Wasowicz, H. Shang, I. Schanzer and J. O. Chiapella. 2022. Genome size variation in Deschampsia cespitosa sensu lato (Poaceae) in Eurasia. Plant Systematics and Evolution 308: 9. https://doi.org/10.1007/s00606-021-01796-7
  18. Gurzenkov, N. N. 1973. Studies of chromosome numbers of plants from the south of the Soviet Far East. Komarov Lectures 20: 47-61.
  19. Husband, B. C., S. J. Baldwin and J. Suda. 2013. The incidence of polyploidy in natural plant populations: Major patterns and evolutionary processes. In Plant Genome Diversity. Vol. 2. Physical Structure, Behaviour and Evolution of Plant Genomes. Leitch, I. J., J. Greilhuber, J. Dolezel and J. F. Wendel (eds.), Springer, Vienna. Pp. 255-276.
  20. Ikeda, H., B.-M. Nam, N. Yamamoto, H. Funakoshi, A. Takano and H.-T. Im. 2021. Chromosome number of myoga ginger (Zingiber mioga: Zingiberaceae) in Korea. Korean Journal of Plant Taxonomy 51: 100-102. https://doi.org/10.11110/kjpt.2021.51.1.100
  21. Jang, T.-S., K. Emadzade, J. Parker, E. M. Temsch, A. R. Leitch, F. Speta and H. Weiss-Schneeweiss. 2013. Chromosomal diversification and karyotype evolution of diploids in the cytologically diverse genus Prospero (Hyacinthaceae). BMC Evolutionary Biolology 13: 136. https://doi.org/10.1186/1471-2148-13-136
  22. Jang, T.-S., J. McCann, J. S. Parker, K. Takayama, S.-P. Hong, G. M. Schneeweiss and H. Weiss-Schneeweiss. 2016. rDNA loci evolution in the genus Glechoma (Lamiaceae). PLoS ONE 11: e0167177. https://doi.org/10.1371/journal.pone.0167177
  23. Jang, T.-S., J. S. Parker, K. Emadzade, E. M. Temsch, A. R. Leitch and H. Weiss-Schneeweiss. 2018. Multiple origins and nested cycles of hybridization result in high tetraploid diversity in the monocot Prospero. Frontiers in Plant Science 9: 433. https://doi.org/10.3389/fpls.2018.00433
  24. Khan, G., J. Nolzen, H. Schepker and D. C. Albach. 2021. Incongruent phylogenies and their implications for the study of diversification, taxonomy, and genome size evolution of Rhododendron. American Journal of Botany 108: 1957-1981. https://doi.org/10.1002/ajb2.1747
  25. Lysak, M. A., A. Berr, A. Pecinka, R. Schmidt, K. McBreen and I. Schubert. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America 103: 5224-5229. https://doi.org/10.1073/pnas.0510791103
  26. McCann, J., T.-S. Jang, J. Macas, G. M. Schneeweiss, N. J. Matzke, P. Novak, T. F. Stuessy, J. L. Villasenor and H. Weiss-Schneeweiss. 2018. Dating the species network: Allopolyploidy and repetitive DNA evolution in American daisies (Melampodium sect. Melampodium, Asteraceae). Systematic Biology 67: 1010-1024. https://doi.org/10.1093/sysbio/syy024
  27. Mitrenina, E. Y., A. S. Erst, L. Peruzzi, M. V. Skaptsov, H. Ikeda, V. Y. Nikulin and W. Wang. 2021. Karyotype and genome size variation in white-flowered Eranthis sect. Shibateranthis (Ranunculaceae). PhytoKeys 187: 207-227. https://doi.org/10.3897/phytokeys.187.75715
  28. Murin, A., I. Haberova and C. Zamsran. 1984. Further karyological studies of the Mongolian flora. Folia Geobotanica et Phytotaxonomica 19: 29-39. https://doi.org/10.1007/BF02853327
  29. Otto, S. P. and J. Whitton. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401-437. https://doi.org/10.1146/annurev.genet.34.1.401
  30. Pellicer, J. and I. J. Leitch. 2020. The plant DNA C-values database (release 7.1): An updated online repository of plant genome size data for comparative studies. New Phytologist 226: 301-305. https://doi.org/10.1111/nph.16261
  31. Pessoa E. M., F. Nollet, R. F. Magalhaes, J. Viruel, F. Pinheiro and M. W. Chase. 2022. Nuclear-plastid discordance indicates past introgression in Epidendrum species (Laeliinae: Orchidaceae) with highly variable chromosome numbers. Botanical Journal of the Linnean Society 199: 357-371. https://doi.org/10.1093/botlinnean/boab080
  32. Redpath, L. E., R. Aryal, N. Lynch, J. A. Spencer, A. M. HulseKemp, J. R. Ballington, J. Green, N. Bassil, K. Hummer, T. Ranney and H. Ashrafi. 2022. Nuclear DNA contents and ploidy levels of North American Vaccinium species and interspecific hybrids. Scientia Horticulturae 297: 110955. https://doi.org/10.1016/j.scienta.2022.110955
  33. Rice, A., L. Glick, S. Abadi, M. Einhorn, N. M. Kopelman, A. Salman-Minkov, J. Mayzel, O. Chay and I. Mayrose. 2015. The chromosome counts database (CCDB): A community resource of plant chromosome numbers. New Phytologist 206: 19-26. https://doi.org/10.1111/nph.13191
  34. Sax, K. 1930. Chromosome stability in the genus Rhododendron. American Journal of Botany 17: 247-251. https://doi.org/10.2307/2435841
  35. Schubert, I. 2007. Chromosome evolution. Current Opinion in Plant Biology 10: 109-115. https://doi.org/10.1016/j.pbi.2007.01.001
  36. Sliwinska, E., J. Loureiro, I. J. Leitch, P. Smarda, J. Bainard, P. Bures, Z. Chumova, L. Horova, P. Koutecky, M. Lucanova, P. Travnicek and D. W. Galbraith. 2021. Application-based guidelines for best practices in plant flow cytometry. Cytometry Part A. Advanced online publication. https://doi.org/10.1002/cyto.a.24499.
  37. Soltis, P. S. and D. E. Soltis. 2009. The role of hybridization in plant speciation. Annual Review of Plant Biology 60: 561-588. https://doi.org/10.1146/annurev.arplant.043008.092039
  38. Stebbins, G. L. Jr. 1938. Cytological characteristics associated with the different growth habits in the dicotyledons. American Journal of Botany 25: 189-198. https://doi.org/10.2307/2436589
  39. Stepanov, N. V. 1994. Chromosome numbers of some higher plants taxa of the flora of Krasnoyarsk region. Botanicheskii Zhurnal Moscow & Leningrad (St. Petersburg) 79: 135-139.
  40. Temsch, E. M., J. Greilhuber and R. Krisai. 2010. Genome size in liverworts. Preslia 82: 63-80.
  41. Temsch, E. M., P. Koutecky, T. Urfus, P. Smarda and J. Dolezel. 2021. Reference standards for flow cytometric estimation of abSolute Nuclear Dna Content In Plants. Cytometry Part A. Advanced Online Publication. Https://doi.org/10.1002/cyto.a.24495
  42. Weiss-Schneeweiss, H., A. R. Leitch, J. McCann, T.-S. Jang and J. Macas. 2015. Employing next generation sequencing to explore the repeat landscape of the plant genome. In Next Generation Sequencing in Plant Systematics. Regnum Vegetabile. Horandl, E. and M. Appelhans (eds.), Koeltz Scientific Books, Konigstein. Pp. 155-179.
  43. Weiss-Schneeweiss, H. and G. M. Schneeweiss. 2013. Karyotype diversity and evolutionary trends in angiosperms. In Plant Genome Diversity. Vol. 2. Physical Structure, Behaviour and Evolution of Plant Genomes. Leitch, I. J., J. Greilhuber, J. Dolezel and J. F. Wendel (eds.), Springer, Vienna. Pp. 209-230.
  44. Yang, J.-C., Y.-H. Kwon, S.-J. Ji and C.-H. Shin. 2015. A new record of Rhododendron keiskei Miq. var. hypoglaucum Suto & Suzuki (Ericaceae) in Korea. Korean Journal of Plant Taxonomy 45: 239-242. https://doi.org/10.11110/kjpt.2015.45.3.239