DOI QR코드

DOI QR Code

Calculating the Actual Surface Area for Gangneung Forest Fire Area Using Slope-Aspect Algorithm

Slope-Aspect 알고리즘을 활용한 강릉시 산불 피해지역 실표면적 산출 방법

  • 정종철 (남서울대학교 드론공간정보공학과)
  • Received : 2022.05.03
  • Accepted : 2022.06.22
  • Published : 2022.06.30

Abstract

This study aims to find the exact area of the forest fire in Okgye-myeon, Gangneung, April 4, 2019. Since there is a gradient in our country's forests, we should find a surface area that takes into account The 5th numerical clinical map provided by the DEM and the Korea Forest Service provided by the National Geographic Information Service was used. In DEM, the center point of each pixel was created and all points were connected. The length of the connecting line is determined by the spatial resolution of the pixel and the cosine value, and the surface area is obtained along with the height value, which is called the Slope-Aspect algorithm. The surface area and floor area of the forest were shown according to the tree species and types of forest, and their quantitative numerical differences proved the validity of this study.

본 연구는 2019년 4월 4일 강릉시 옥계면에서 발생한 산불 피해지역의 정확한 면적을 구하는 것을 목적으로 한다. 우리나라의 산림은 경사도가 존재하고 있으므로 평면적이 아닌 경사를 고려한 표면적을 구해야 한다. 국토지리정보원에서 제공하고 있는 DEM과 산림청에서 제공하는 제5차 수치임상도를 사용하였다. DEM에서는 각 화소의 중심점을 생성하고 모든 점을 연결하였다. 이때 연결선의 길이는 화소의 공간해상력과 cosine값을 통해 결정되며 높이값과 함께 표면적을 구하며, 이를 Slope-Aspect 알고리즘이라 한다. 산림의 표면적과 평면적을 나무의 수종, 산림의 종류에 따라 나타냈으며 이들의 정량적인 수치 차이를 통해 본 연구의 유효성을 입증하였다.

Keywords

Acknowledgement

이 논문은 2022년도 남서울대학교 학술연구비 지원에 의해 연구되었음.

References

  1. Kim NI, Lee YW, 2020. Active Fire Detection Using Landsat 8 OLI Images. A Case of 2019 Australia Fires. Korean Journal of Remote Sensing. 36(5): 775-784. https://doi.org/10.7780/KJRS.2020.36.5.1.10
  2. Kim SI, Ahn DS, Kim SC. 2021. RGB Composite Technique for Post Wildfire Vegetation Monitoring Using Sentinel-2 Satellite Data. Korean Journal of Remote Sensing. 37(5): 939~946. https://doi.org/10.7780/KJRS.2021.37.5.1.9
  3. Kim JS, Oh JS. 2021. Recoverability analysis of Forest Fire Area Based on Satellite Imagery: Applicationsto DMZ in the Western Imjin Estuary. Journal of Korean Geomorphological Association. 28(1): 83~99. https://doi.org/10.16968/JKGA.28.1.83
  4. Kim DW, Chung WD, Lee BD. 2016. Exploring Tree Crown Spacing and Slope Interaction Effects on Fire Behavior with a Physics-based Fre Model. Forest Science and Technology. 12(4): 167-175. https://doi.org/10.1080/21580103.2016.1144541
  5. Ryu JH, Kim SH, Yoo BO, Kim JC, Seo SA, Kim JS. 2011. Production of the 5th Clinical Diagram Using DB Data from Aerial Photographs. Korea Forest Research Institute. 11-1400377-000449-01
  6. Shin Jl, Seo WW, Kim TJ, Woo CS, Park JW. 2019. Analysis of Availability of High-resolution Satellite and UAV Multispectral Images for Forest Burn Severity Classification. Korean Journal of Remote Sensing. 35(6):1095-1106. https://doi.org/10.7780/KJRS.2019.35.6.2.6
  7. Yun WK, Song YJ, Moon JS, Jang SJ, Yoo SJ, 2019. Deep Learning Based Temperature Sensor Data and Wildfire Propagation Prediction in Duty Cycled Wireless Seonsor Network. The Journal of Korean Institute of Communications and Information Science 44(6):1092-1104. https://doi.org/10.7840/kics.2019.44.6.1092
  8. Youn HG, Jeong JC. 2020. Classification of Forest Fire Damage Grade Using Machine Learning and Sentinel-2. The Korea Spatial Planning Review. 106: 107-117. https://doi.org/10.15793/KSPR.2020.106..006
  9. Lee SM, Jeong JC. 2019. Forest Fire Severity Classification Using Probability Density Function and KOMPSAT-3A. Korean Journal of Remote Sensing. 35(6):1341-1350. https://doi.org/10.7780/KJRS.2019.35.6.4.4
  10. Won MS, Jang KC, Yoon SH, Lee HT. 2019. Change Detection of Damaged Area and Burn Severity due to Heat Damage from Gangwon Large Fire Area in 2019. Korean Journal of Remote Sensing. 35(6):1083-1093. https://doi.org/10.7780/KJRS.2019.35.6.2.5
  11. Lee JP. 2021.Quality Assessment of Digital Surface Model Vertical Position Accuracies. Journal of Cadastre & Land InformatiX. 51(1):125-136. https://doi.org/10.22640/LXSIRI.2021.51.1.125
  12. Jeong JC, Youn HJ. 2020. Region of Interest (ROI) Selection of Land Cover Using SVM Cross Validation. Journal of Cadastre & Land InformatiX. 50(1):75-85. https://doi.org/10.22640/LXSIRI.2020.50.1.75
  13. Cho KH, Jeong JC. 2018. Automatic selection method of ROI(region of interest) using land cover spatial data. Journal of Cadastre & Land InformatiX. 48(2):171-183. https://doi.org/10.22640/LXSIRI.2018.48.2.171
  14. Akay A. Erdogan A. 2017. GIS-BASED MultiCriteria Decision Analysis For Forest Fire Risk Mapping. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. IV-4/W4. 25-30.
  15. Estes B, Knapp E, Skinner C, Miller J, Preisler H. 2017. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere. 8.
  16. Fang L, Yang J, White M, Liu Z. 2018. Predicting Potential Fire Severity Using Vegetation, Topography and Surface Moisture Availability in a Eurasian Boreal Forest Landscape. Forests. 9.
  17. Paula F, Holobaca I. 2013. Forest fires study using remote sensing and meteorological indicators. Case study. Geographia Technica. 8:23-37.