DOI QR코드

DOI QR Code

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera)

전국 야생 벌목 분포에 대한 기후요인 영향 연구

  • Yu, Dong-Su (National Agrobiodiversity Center, NAS, RDA) ;
  • Kwon, Oh-Chang (Climate Change and Carbon Research Team, National Institute of Ecology) ;
  • Shin, Man-Seok (Ecological Information Team, National Institute of Ecology) ;
  • Kim, Jung-Kyu (Dept. of Bio Environment Health, Dongnam Health University) ;
  • Lee, Sang-Hun (Ecological Information Team, National Institute of Ecology)
  • 유동수 (국립농업과학원 농업유전자원센터) ;
  • 권오창 (국립생태원 기후탄소연구팀) ;
  • 신만석 (국립생태원 생태정보팀) ;
  • 김정규 (동남보건대학교 바이오환경보건과) ;
  • 이상훈 (국립생태원 생태정보팀)
  • Received : 2022.01.05
  • Accepted : 2022.05.11
  • Published : 2022.06.30

Abstract

Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy

온실가스 배출 증가에 의한 기후변화는 화분매개곤충과 식물과의 생태적 상호작용인 수분생태계와 농업생태계를 포함한 자연생태계를 변화시킬 수 있다. 특히 수분생태계에서 중요한 야생벌(wild bee)은 기후변화에 의해 감소되고 있어서 결국 농업경제, 현화식물의 생태활동, 나아가 전체 생물종 다양성에 악 영향을 끼치고 있음이 보고되고 있다. 따라서 지구온난화에 의해 한반도(남한)에서도 매년 기온이 상승하고 있고, 그에 따른 기후변화 발생으로 한반도 내 야생벌의 생태활동에 영향을 주고 있음을 예상할 수 있다. 본 연구에서는 한반도(남한)에서 출현하는 야생벌(꿀벌상과, 말벌상과, 청벌상과)의 분포와 기후요인과의 관계를 검정하기 위하여, 2017년(37 조사지점)에서 2018년 (14 조사지점)까지 총 51개 조사지점을 대상으로 말레이즈 트랩을 이용하여 야생벌류의 출현현황을 파악하였다. 형태 및 문헌을 통해 동정한 야생벌류와 산림기후대에 따른 분포는 평균기온, 적산온도와 상관성이 있음을 확인하였다. 이러한 결과를 바탕으로 공통사회 경제경로(Shared Socioeconomic Pathways, SSP) 시나리오의 2-4.5와 5-8.5버전으로 BIOMOD 종분포 모형에 따라 남한 전역에서 출현한 야생벌과 기후대별로 특이적으로 출현한 종의 서식지 분포 변화를 예측하여 현재의 종 서식지 분포에서, 2050년과 2100년에 북쪽으로 서식지가 이동함을 확인하였다. 이를 통해 향후 지구온난화가 지속될 경우 국내 야생벌의 분포 변화가 일어 날 수 있고, 그로 인한 한반도의 생태계 변화가 야기될 수 있음을 예측할 수 있었다. 본 연구결과는 기후변화에 따른 수분생태계 및 그와 관련된 영향에 대한 연구와 야생벌 관리를 위한 정책수립을 위해 참조할 수 있는 연구자료가 될 수 있을 것으로 기대하고 있다.

Keywords

Acknowledgement

이 논문은 국립생태원 "NIE-B-2022-01"의 지원에 의해 수행되었습니다.

References

  1. Adhikari, P., J.Y. Jeon, H.W. Kim, H.S. Oh, P. Adhikari and C. Seo(2020) Northward range expansion of southern butterflies according to climate change in South Korea. Journal of Climate Change Research 11: 643-656. https://doi.org/10.15531/KSCCR.2020.11.6.643
  2. Choi, M.B., J.K. Kim and J. Lee(2013) Checklist and Distribution of Korean Vespidae Revisited. Korean Journal of Applied Entomology 52(2): 85-92. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2013.02.1.072
  3. Choi, S.W. and C. Jung(2015) Diversity of Insect Pollinators in Different Agricultural Crops and Wild Flowering Plants in Korea: Literature Review. Journal of Apiculture 30(3): 191-201. (in Korean with English abstract) https://doi.org/10.17519/apiculture.2015.09.30.3.191
  4. Grigorieva, E., A. Matzarakis and C. De Freitas(2010) Analysis of growing degree-days as climate impact indicator in a region with extreme annual air temperature amplitude. Climate Research 42: 143-154. https://doi.org/10.3354/cr00888
  5. Han, J.H.(2014) A Study on the Present State and Development Strategies of the Beekeeping Industry. Korea Rural Economic Institute, pp.1-99. (in Korean with English abstract)
  6. Hao, T., J. Elith, G. Guillera-Arroita and J.J. Lahoz-Monfort(2019) A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions 25(5): 839-852. https://doi.org/10.1111/ddi.12892
  7. Hijmans, R.J., S. Phillips, J. Leathwick, J. Elith and M.R.J. Hijmans(2017) Package 'dismo'. Circles 9(1): 1-68.
  8. Hoehn, P., I. Steffan-Dewenter and T. Tscharntke(2010) Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodiversity and Conservation 19: 2189-2200. doi:10.1007/s10531-010-9831-z
  9. Hughes, A.(2018) Survey of the critically endangered Rusty Patched Bumble bee (Bombus affinis) at Midewin National Tallgrass Prairie, (USDA-FS) Ill. Pence-Boyce STEM Student Scholarship, 2.
  10. Kang, C. and H. Lee(2018) A Study on the Effect of Wind Speed on the Production of Honey. Journal of Apiculture 33(1): 63-70. (in Korean with English abstract) https://doi.org/10.17519/apiculture.2018.04.33.1.63
  11. Kim, N.H. and S.W. Choi(2014) Seasonal and Elevational Pattern of Herbivore's Feeding Activity in Temperate Deciduous Forest. Korean Journal of Ecology and Environment 47(1): 24-31. (in Korean with English abstract) https://doi.org/10.11614/KSL.2014.47.1.024
  12. Kong, S.J., J.H. Shin and K.C. Yang(2013) The Study of Adaptable Plant Species according to Warmth Index using RCP 8.5 Scenarios in Cheonan-Si. Journal of the Korean Society of Environmental Restoration Technology 16(3): 19-30. (in Korean with English abstract) https://doi.org/10.13087/kosert.2013.16.3.019
  13. Koo, K.A., S.U. Park, S. Hong, I. Jang and C. Seo(2018) Future distributions of warm-adapted evergreen trees, Neolitsea sericea and Camellia japonica under climate change: Ensemble forecasts and predictive uncertainty. Ecological Research 33(2): 313-325. https://doi.org/10.1007/s11284-017-1535-3
  14. Morton, E.M. and N.E. Rafferty(2017) Plant-pollinator interactions under climate change: The use of spatial and temporal transplants. Applications in Plant Sciences 5(6): apps.1600133. doi:10.3732/apps.1600133
  15. O'Neill, B.C., E. Kriegler, K. Riahi, K.L. Ebi, S. Hallegatte, T.R. Carter, R. Mathur and D.P. Van Vuuren(2014) A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change 122(3): 387-400. https://doi.org/10.1007/s10584-013-0905-2
  16. Potts, S., V. Imperatriz-Fonseca, H. Ngo, J. Biesmeijer, T. Breeze, L. Dicks, L. Garibaldi, R. Hill, J. Settele and A. Vanbergen (2016) The Assessment Report on Pollinators, Pollination and Food Production: United Nations Environment Programme, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany.
  17. Potts, S.G., J.C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger and W.E. Kunin(2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution 25(6): 345-353. https://doi.org/10.1016/j.tree.2010.01.007
  18. Shell, W.A. and S.M. Rehan(2019) Invasive range expansion of the small carpenter bee, Ceratina dentipes (Hymenoptera: Apidae) into Hawaii with implications for native endangered species displacement. Biological Invasions 21(4): 1155-1166. doi:10.1007/s10530-018-1892-z
  19. Shin, M.S., C. Seo, S.U. Park, S.B. Hong, J.Y. Kim, J.Y. Jeon and M. Lee(2018) Prediction of Potential Habitat of Japanese evergreen oak (Quercus acuta Thunb.) Considering Dispersal Ability Under Climate Change. Journal of Environmental Impact Assessment 27(3): 291-306. (in Korean with English abstract) https://doi.org/10.14249/EIA.2018.27.3.291
  20. Shin, S., K.S. Jung, H.G. Kang, J.H. Dang, D. Kang, J.E. Han and J.H. Kim(2021) Northward expansion trends and future potential distribution of a dragonfly Ischnura senegalensis Rambur under climate change using citizen science data in South Korea. Journal of Ecology and Environment 45(1): 33. https://doi.org/10.1186/s41610-021-00209-7
  21. Son, M., S. Jung and C. Jung(2019) Diversity and Interaction of Pollination Network from Agricultural Ecosystems during Summer. Journal of Apiculture 34(3): 197-206. (in Korean with English abstract) https://doi.org/10.17519/apiculture.2019.09.34.3.197
  22. Sung, S., Y.S. Kwon and K.D. Kim(2018) Development and applications of ecological data portal service (EcoBank) for sharing ecological information of Korea. Korean Journal of Ecology and Environment 51(3): 212-220. (in Korean with English abstract) https://doi.org/10.11614/KSL.2018.51.3.212
  23. Thuiller, W., D. Georges, R. Engler, F. Breiner, M.D. Georges and C.W. Thuiller(2016) Package 'biomod2'. Species distribution modeling within an ensemble forecasting framework. Ecography 32: 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
  24. US Fish and Wildlife Service(2015) Endangered and Threatened Wildlife and Plants; Endangered Status for 49 Species From the Hawaiian Islands (Vol. 80). US Fish and Wildlife Service, pp. 58820-58909.
  25. Weibull, W.(1951) A statistical distribution function of wide applicability. Journal of Applied Mechanics 18(3): 293-297. https://doi.org/10.1115/1.4010337
  26. Willmer, P.(2012) Ecology: Pollinator-Plant Synchrony Tested by Climate Change. Current Biology 22(4): R131-R132. https://doi.org/10.1016/j.cub.2012.01.009
  27. Yoon, H.J., K.Y. Lee, H.S. Lee, M.Y. Lee, Y.S. Choi, M.L. Lee and G.H. Kim(2017) Survey of Insect Pollinators Use for Horticultural Crops in Korea, 2016. Journal of Apiculture 32(3): 223-235. (in Korean with English abstract) https://doi.org/10.17519/apiculture.2017.09.32.3.223
  28. Yu, D.S., O.C. Kwon and H.G. Kim(2020) A Simple Program Improving Uncertainly Average Temperature and Growing Degree Days based on RCP Scenario. Journal of Climate Change Research 11(2): 113-122. (in Korean with English abstract) https://doi.org/10.15531/KSCCR.2020.11.2.113
  29. Yu, D.S., O.C. Kwon, H. Kim and J.K. Kim(2019) Nationwide Spatiotemporal Distribution of Some Selected Aculeata (Hymenoptera) in South Korea, based on Materials Collected with Malaise Trap in 2017 and 2018. Korean Journal of Environment and Ecology 33(6): 654-663. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2019.33.6.654
  30. Zhou, G. and Q. Wang(2018) A new nonlinear method for calculating growing degree days. Scientific Reports 8(1): 10149. https://doi.org/10.1038/s41598-018-28392-z