DOI QR코드

DOI QR Code

마이크로미터 단위 화학 반응 관찰 및 분석을 위한 미세 유량 제어 장치의 순환구조 제작 연구

Fabrication of Circulation Structures of Microfluidic Devices for Observation and Analysis of Micrometer-Scale Chemical Reactions

  • 장원준 (가천대학교 신소재공학과) ;
  • 이남종 (가천대학교 신소재공학과) ;
  • 정다운 (가천대학교 신소재공학과) ;
  • 김홍석 (가천대학교 신소재공학과) ;
  • 정승찬 (가천대학교 신소재공학과) ;
  • 한재희 (가천대학교 신소재공학과)
  • Jang, Wonjun (Department of Materials Science and Engineering, Gachon University) ;
  • Lee, Namjong (Department of Materials Science and Engineering, Gachon University) ;
  • Jung, Dawoon (Department of Materials Science and Engineering, Gachon University) ;
  • Kim, Hong-Seok (Department of Materials Science and Engineering, Gachon University) ;
  • Jung, Seung Chan (Department of Materials Science and Engineering, Gachon University) ;
  • Han, Jae-Hee (Department of Materials Science and Engineering, Gachon University)
  • 투고 : 2022.02.25
  • 심사 : 2022.03.08
  • 발행 : 2022.07.01

초록

In-situ analyzation and detection of real-time chemical reactions can be a significant part in interpreting the underlying mechanism in very reactive chemical reactions. To do this, first we have designed a microfluidic device (MFD) pattern for observation of synthesis of hierarchical nanostructures based on graphene oxide (GO), conjugating the well-known coupling reaction by which the solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling is enhanced in the presence of n-hydroxysuccinimide (NHS) to make amide bonding, hereafter called as the EDC coupling. Then, we have manufactured microfluidic devices with multiple tens of micrometer-sized channels that can circulate those nanomaterials to be chemically reacted in the channels. These microfluidic devices were made by negative photo lithography and soft lithography. We showed the possibility of using Raman spectroscopy to reveal the basic mechanism of the energy storage applications.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2020R1A4A407983711 and No.2021R1F1A106137611).

참고문헌

  1. A. J. deMello. Nature, 442, 394 (2006). [DOI: https://doi.org/10.1038/nature05062]
  2. S. Sayyar, E. Murray, S. Gambhir, G. Spinks, G. G. Wallace, and D. L. Officer, JOM, 68, 384 (2016). [DOI: https://doi.org/10.1007/s11837-015-1549-7]
  3. J. P. Lopez-Alonso, F. Diez-Garcia, J. Font, M. Ribo, M. Vilanova, J. M. Scholtz, C. Gonzalez, F. Vottariello, G. Gotte, M. Libonati, and D. V. Laurents, Bioconjugate Chem., 20, 1459 (2009). [DOI: https://doi.org/10.1021/bc9001486]
  4. U. Okoroanyanwu, T. Shimokawa, J. D. Byers, D. R. Medeiros, C. G. Willson, Q. J. Niu, J.M.J. Frechet, and R. D. Allen, Proc. Microlithography '97, 3049 (SPIE, Santa Clara, USA, 1997) p. 92-103. [DOI: https://doi.org/10.1117/12.275867]
  5. E. F. Reznikova, J. Mohr, and H. Hein, Microsyst. Technol., 11, 282 (2005). [DOI: https://doi.org/10.1007/s00542-004-0432-1]
  6. U. Okoroanyanwu, Chemistry and Lithography (Bellingham, WA: SPIE, 2010) p. 195.
  7. T. Aida, Y. Hanbu, and T. Kato, Proc. SPIE Photonics Europe, 6993 (SPIE, Strasbourg, France, 2008). [DOI: https://doi.org/10.1117/12.782157]
  8. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, Sens. Actuators, A, 64, 33 (1998). [DOI: https://doi.org/10.1016/s0924-4247(98)80055-1]
  9. S. H. Huang, W. H. Tan, S. Takeuchi, and F. G. Tseng, Proc. 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, Hyogo, 2007) p. 449. [DOI: https://doi.org/10.1109/memsys.2007.4433068]
  10. D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, Microfluidics Based Microsystems (Springer, Dordrecht, 2010) p. 305. [DOI: https://doi.org/10.1007/978-90-481-9029-4_17]
  11. V. Srinivasan, V. K. Pamula, and R. B. Fair, Lab Chip, 4, 310 (2004). [DOI: https://doi.org/10.1039/b403341h]
  12. M. A. Eddings, M. A. Johnson, and B. K. Gale, J. Micromech. Microeng., 18, 067001 (2008). [DOI: https://doi.org/10.1088/0960-1317/18/6/067001]
  13. K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, Microsyst. Technol., 9, 5 (2002). [DOI: https://doi.org/10.1007/s00542-002-0194-6]
  14. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, J. Microelectromech. Syst., 14, 590 (2005). [DOI: https://doi.org/10. 1109/jmems.2005.844746] https://doi.org/10.1109/jmems.2005.844746
  15. M. A. Eddings, M. A. Johnson, and B. K. Gale, J. Micromech. Microeng., 18, 067001 (2008). [DOI: https://doi.org/10.1088/0960-1317/18/6/067001]
  16. S. H. Tan, N. T. Nguyen, Y. C. Chua, and T. G. Kang, Biomicrofluidics, 4, 032204 (2010). [DOI: https://doi.org/10.1063/1.3466882]
  17. P. Rostron, S. Gaber, and D. Gaber, Laser, 21, 24 (2016).