DOI QR코드

DOI QR Code

Synthesis and Characterization of Triptycene-Based Triphenylamine Electron Donor Molecules

트립티센 기반의 트리페닐아민 전자-주게 분자 합성 및 특성 분석

  • Ryu, Youngjun (Department of Chemistry, The Catholic University of Korea) ;
  • An, Byeong-Kwan (Department of Chemistry, The Catholic University of Korea)
  • Received : 2022.03.15
  • Accepted : 2022.03.24
  • Published : 2022.07.01

Abstract

The development of efficient electron donor (or hole-transporting) molecules that can be used in various optoelectronic device fields is highly demanded. In this work, a novel class of triptycene-based three-dimensional (3D) triphenylamine (TI-TPA) derivatives with different end substituents was designed and prepared for transparent electron donor materials. Owing to the rigid 3D triptycene framework, the obtained TI-TPA derivatives had an amorphous morphology with high thermal decomposition temperature. The oxidation potential of these TI-TPA derivatives decreased as the electron donating strength of the end substituent increased. Among TI-TPA derivatives, TI-TPA-OMe exhibited the highest HOMO level (-5.31 eV) which is similar to that of Spiro-OMeTAD (-5.22 eV). In addition, TI-TPA-OMe was found to form a strong charge transfer complex with the triptycene-based acceptor TI-BQ, leading to a new absorption band at around 640 nm. These results can be applied for developing efficient electron donor materials that can mimic the advantages of the spiro-linked structure and TPA units of Spiro-OMeTAD.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03035785).

References

  1. P. Cias, C. Slugovc, and G. Gescheidt, J. Phys. Chem. A, 115, 14519 (2011). [DOI: https://doi.org/10.1021/jp207585j]
  2. S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, and J. Roncali, J. Am. Chem. Soc., 128, 3459 (2006). [DOI: https://doi.org/10.1021/ja058178e]
  3. T. Leijtens, I. K. Ding, T. Giovenzana, J. T. Bloking, M. D. McGehee, and A. Sellinger, ACS Nano, 6, 1455 (2012). [DOI: https://doi.org/10.1021/nn204296b]
  4. Y. L. Xu, W. L. Ding, and Z. Z. Sun, Nanoscale, 10, 20329 (2018). [DOI: https://doi.org/10.1039/C8NR04730H]
  5. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Nature, 395, 583 (1998). [DOI: https://doi.org/10.1038/26936]
  6. Z. Hawash, L. K. Ono, and Y. Qi, Adv. Mater. Interfaces, 5, 1700623 (2018). [DOI: https://doi.org/10.1002/admi.201700623]
  7. G. Ren, W. Han, Y. Deng, W. Wu, Z. Li, J. Guo, H. Bao, C. Liu, and W. Guo, J. Mater. Chem. A, 9, 4589 (2021). [DOI: https://doi.org/10.1039/D0TA11564A]
  8. J. H. Chong and M. J. MacLachlan, Chem. Soc. Rev., 38, 3301 (2009). [DOI: https://doi.org/10.1039/B900754G]
  9. Y. Jiang and C. F. Chen, Eur. J. Org. Chem., 32, 6377 (2011). [DOI: https://doi.org/10.1002/ejoc.201100684]
  10. M. J. Gu, Y. F. Wang, Y. Han, and C. F. Chen, Org. Biomol. Chem., 19, 10047 (2021). [DOI: https://doi.org/10.1039/D1OB01818C]
  11. M. M. Heravi, Z. Kheilkordi, V. Zadsirjan, M. Heydari, and M. Malmir, J. Organomet. Chem., 861, 17 (2018). [DOI: https://doi.org/10.1016/j.jorganchem.2018.02.023]
  12. H. Li, K. Fu, A. Hagfeldt, M. Gratzel, S. G. Mhaisalkar, and A. C. Grimsdale, Angew. Chem. Int. Ed., 53, 4085 (2014). [DOI: https://doi.org/10.1002/anie.201310877]
  13. S. Daskeviciute, N. Sakai, M. Franckevicius, M. Daskeviciene, A. Magomedov, V. Jankauskas, H. J. Snaith, and V. Getautis, Adv. Sci., 5, 1700811 (2018). [DOI: https://doi.org/10.1002/advs.201700811]
  14. B. Kumari, M. Paramasivam, T. Mukherjee, S. Khandelwal, A. Dutta, and S. Kanvah, New J. Chem., 45, 4683 (2021). [DOI: https://doi.org/10.1039/D0NJ05505K]
  15. K. Rakstys, A. Abate, M. I. Dar, P. Gao, V. Jankauskas, G. Jacopin, E. Kamarauskas, S. Kazim, S. Ahmad, M. Gratzel, and M. K. Nazeeruddin, J. Am. Chem. Soc., 137, 16172 (2015). [DOI: https://doi.org/10.1021/jacs.5b11076]