DOI QR코드

DOI QR Code

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications

  • Received : 2022.02.11
  • Accepted : 2022.03.16
  • Published : 2022.07.01

Abstract

Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.

키워드

과제정보

This work was supported by the 2021 sabbatical year research grant of the University of Seoul.

참고문헌

  1. T. W. Hickmott, J. Appl. Phys., 33, 2669 (1962). [DOI: https://doi.org/10.1063/1.1702530]
  2. J. F. Gibbons and W. E. Beadle, Solid-State Electron., 7, 785 (1964). [DOI: https://doi.org/10.1016/0038-1101(64)90131-5]
  3. G. Dearnaley, A. M. Stoneham, and D. V. Morgan, Rep. Prog. Phys., 33, 1129 (1970). [DOI: https://doi.org/10.1088/0034-4885/33/3/306]
  4. J. G. Simmons, J. Phys. D: Appl. Phys., 4, 613 (1971). [DOI: https://doi.org/10.1088/0022-3727/4/5/202]
  5. A. Sawa, Mater. Today, 11, 28 (2008). [DOI: https://doi.org/10.1016/S1369-7021(08)70119-6]
  6. T. C. Chang, K. C. Chang, T. M. Tsai, T. J. Chu, and S. M. Sze, Mater. Today, 19, 254 (2016). [DOI: https://doi.org/10.1016/j.mattod.2015.11.009]
  7. F. M. Simanjuntak, D. Panda, K. H. Wei, and T. Y. Tseng, Nanoscale Res. Lett., 11, 368 (2016). [DOI: https://doi.org/10.1186/s11671-016-1570-y]
  8. H. Wang, C. Zou, L. Zhou, C. Tian, and D. Fu, Microelectron. Eng., 91, 144 (2012). [DOI: https://doi.org/10.1016/j.mee.2011.05.037]
  9. A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett., 77, 139 (2000). [DOI: https://doi.org/10.1063/1.126902]
  10. S. Q. Liu, N. J. Wu, and A. Ignatiev, Appl. Phys. Lett., 76, 2749 (2000). [DOI: https://doi.org/10.1063/1.126464]
  11. B. J. Choi, A.B.K. Chen, X. Yang, and I. W. Chen, Adv. Mater., 23, 3847 (2011). [DOI: https://doi.org/10.1002/adma.201102132]
  12. H. Jiang, X. Y. Li, R. Chen, X. L. Shao, J. H. Yoon, X. Hu, C. S. Hwang, and J. Zhao, Sci. Rep., 6, 22216 (2016). [DOI: https://doi.org/10.1038/srep22216]
  13. B. W. Fowler, Y. F. Chang, F. Zhou, Y. Wang, P. Y. Chen,. F. Xue, Y. T. Chen, B. Bringhurst, S. Pozder, and J. C. Lee, RSC Adv., 5, 21215 (2015). [DOI: https://doi.org/10.1039/C4RA16078A]
  14. K. H. Jung, S. G. Song, K. W. Park, J. H. Sok, K. M. Kim, and Y. S. Park, J. Korean Phys. Soc., 70, 489 (2017). [DOI: https://doi.org/10.3938/jkps.70.489]
  15. J. Kim, A. I. Inamdar, Y. Jo, H. Woo, S. Cho, S. M. Pawar, H. Kim, and H. Im, ACS Appl. Mater. Interfaces, 8, 9499 (2016). [DOI: https://doi.org/10.1021/acsami.5b11781]