과제정보
This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET), through Development of new control methods for bacterial fruit rots through analysis of the pathogenicity of the pathogen (120088-05-2). This research has been worked with the support of a research grant of Kangwon National University in 2021.
참고문헌
- Abd El-Rahman, A. F., Shaheen, H. A., Abd El-Aziz, R. M. and Ibrahim, D. S. S. 2019. Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. EgyptJ. Biol. Pest Control 29: 41. https://doi.org/10.1186/s41938-019-0143-7
- Ahmad, A.-G. M., Attia, A.-Z. G., Mohamed, M. S. and Elsayed, H. E. 2019. Fermentation, formulation and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of peanut soil-borne diseases. J. Integr. Agric. 18: 2080-2092. https://doi.org/10.1016/S2095-3119(19)62578-5
- Ahmad, F., Ahmad, I. and Khan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181. https://doi.org/10.1016/j.micres.2006.04.001
- Cappuccino, J. G. and Sherman, N. 1992. Microbiology: a Laboratory Manual. The Benjamin/Cummings Publishing Co., San Francisco, CA, USA. 560 pp.
- Clemente, M., Corigliano, M. G., Pariani, S. A., Sanchez-Lopez, E. F., Sander, V. A. and Ramos-Duarte, V. A. 2019. Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming. Int. J. Mol. Sci. 20: 1345. https://doi.org/10.3390/ijms20061345
- Crowley, D. E., Wang, Y. C., Reid, C. P. P. and Szaniszlo, P. J. 1991. Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130: 179-198. https://doi.org/10.1007/BF00011873
- Dinesh, R., Anandaraj, M., Kumar, A., Bini, Y. K., Subila, K. P. and Aravind, R. 2015. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res. 173: 34-43. https://doi.org/10.1016/j.micres.2015.01.014
- Elsayed, T. R., Jacquiod, S., Nour, E. H., Sorensen, S. J. and Smalla, K. 2020. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Front. Microbiol. 10: 2835. https://doi.org/10.3389/fmicb.2019.02835
- Essalimi, B., Esserti, S., Rifai, L. A., Koussa, T., Makroum, K., Belfaiza, M. et al. 2022. Enhancement of plant growth, acclimatization, salt stress tolerance and verticillium wilt disease resistance using plant growth-promoting rhizobacteria (PGPR) associated with plum trees (Prunus domestica). Sci. Hortic. 291: 110621. https://doi.org/10.1016/j.scienta.2021.110621
- Ferreira, C. M. H., Sousa, C. A., Sanchis-Perez, I., Lopez-Rayo, S., Barros, M. T., Soares, H. M. V. M. et al. 2019. Calcareous soil interactions of the iron (III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max). Sci. Total Environ. 647: 1586-1593. https://doi.org/10.1016/j.scitotenv.2018.08.069
- Fricke, B., Drossler, K., Willhardt, I., Schierhorn, A., Menge, S. and Rucknagel, P. 2001. The cell envelope-bound metalloprotease (camelysin) from Bacillus cereus is a possible pathogenic factor. Biochim. Biophys. Acta 1537: 132-146. https://doi.org/10.1016/S0925-4439(01)00066-7
- Hartono, Nurfitriani, Asnawati, F., Citra, H., Handayani, N. I., Junda, M. et al. 2016. Ability of ammonium excretion, indole acetic acid production, and phosphate solubilization of nitrogenfixing bacteria isolated from crop rhizosphere and their effect on plant growth. APRN J. Eng. Appl. Sci. 11: 11735-11741.
- Hopkins, D. L. and Thompson, C. M. 2002. Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. HortScience 37: 924-926. https://doi.org/10.21273/hortsci.37.6.924
- Jang, S.-W., Kim, Y.-H., Na, C.-I. and Lee, I.-J. 2017. Changes in mineral uptake and hormone concentrations in rice plants treated with silicon, nitrogen and calcium independently or in combination. Korean J. Crop Sci. 62: 293-303. https://doi.org/10.7740/KJCS.2017.62.4.293
- Jung, H. I., Kim, K. K., Park, H. C., Lee, S. M., Kim, Y. G., Kim, H. S., et al. 2007. Isolation and characteristics of bacteria showing biocontrol and biofertilizing activities. J. Life Sci. 17: 1682-1688. https://doi.org/10.5352/JLS.2007.17.12.1682
- Jung, T.-K., Kim, J.-H. and Song, H.-G. 2012. Antifungal activity and plant growth promotion by rhizobacteria inhibiting growth of plant pathogenic fungi. Korean J. Microbiol. 48: 16-21. https://doi.org/10.7845/KJM.2012.48.1.016
- Jung, W.-J. 2020. Agricultural application of natural polymers chitin and chitosan. Food Sci. Ind. 53: 33-42. https://doi.org/10.23093/FSI.2020.53.1.33
- Khan, M. S., Zaidi, A., Ahemad, M., Oves, M. and Wani, P. A. 2010. Plant growth promotion by phosphate solubilizing fungicurrent perspective. Arch. Agron. Soil Sci. 56: 73-98. https://doi.org/10.1080/03650340902806469
- Kumar, B. S. D. and Dube, H. C. 1992. Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil. Biol. Biochem. 24: 539-542. https://doi.org/10.1016/0038-0717(92)90078-C
- Kumar, G. and Sarma, B. K. 2016. Eco-friendly management of soilborne plant pathogens through plant growth-promoting Rhizobacteria. SATSA Mukhapatra Annu. Tech. Issue 20: 167-171.
- Kwon, D.-H., Choi, J.-H., Jeung, H.-K., Lim, J.-H., Joo, G. J. and Kim, S.-D. 2004. Selection and identification of auxin-producing plant growth promoting rhizobacteria having phytopathogenantagonistic activity. J. Korean Soc. Appl. Biol. Chem. 47: 17-21.
- Lessl, J. T., Fessehaie, A. and Walcott, R. R. 2007. Colonization of female watermelon blossoms by Acidovorax avenae ssp. citrulli and the relationship between blossom inoculum dosage and seed infestation. J. Phytopathol. 155: 114-121. https://doi.org/10.1111/j.1439-0434.2007.01204.x
- Mahadevan, B. and Crawford, D. L. 1997. Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb. Technol. 20: 489-493. https://doi.org/10.1016/S0141-0229(96)00175-5
- Mohammed, A. F., Oloyede, A. R. and Odeseye, A. O. 2020. Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch. Phytopathol. Plant Prot. 53: 1-16. https://doi.org/10.1080/03235408.2020.1715756
- Noh, J.-T. and Choi, Y.-H. 2015. Search for plant-originated antibacterial compounds against pathogen (Acidovorax avenae subsp. citrulli) of watermelon bacterial fruit blotch. Korean J. Org. Agric. 23: 77-89. https://doi.org/10.11625/KJOA.2015.23.1.77
- Punja, Z. K. and Zhang, Y. Y. 1993. Plant chitinases and their roles in resistance to fungal diseases. J. Nematol. 25: 526-540.
- Rane, K. K. and Latin, R. X. 1992. Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis. 76: 509-512. https://doi.org/10.1094/PD-76-0509
- Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Singh, M., Singh, D., Gupta, A., Pandey, K. D., Singh, P. K. and Kumar, A. 2019. Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In: PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management, eds. by A. K. Singh, A. Kumar and P. K. Singh, pp. 41-66. Woodhead Publishing, Cambridge, UK.
- Song, W. Y., Kim, H. M. So, I. Y. and Kang, Y. K. 1991. Pseudomonas pseudoalcaligenes subsp. citrulli: the causal agent of bacterial fruit blotch rot on watermelon. Korean J. Plant Pathol. 7: 177-182.
- Sowel, G. Jr. and Schaad, N. 1979. Pseudomonas pseudoalcaligenes subsp. citrulli on watermelon: seed transmission and resistance of plant introductions. Plant Dis. Rep. 63: 437-441.
- Trapet, P., Avoscan, L., Klinguer, A., Pateyron, S., Citerne, S., Chervin, C. et al. 2016. The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol. 171: 675-693. https://doi.org/10.1104/pp.15.01537
- Vajravijayan, S., Pletnev, S., Mani, N., Pletneva, N., Nandhagopal, N. and Gunasekaran, K. 2018. Structural insights on starch hydrolysis by plant β-amylase and its evolutionary relationship with bacterial enzymes. Int. J. Biol. Macromol. 113: 329-337. https://doi.org/10.1016/j.ijbiomac.2018.02.138
- Voisard, C., Keel, C., Haas, D. and Defago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351-358. https://doi.org/10.1002/j.1460-2075.1989.tb03384.x
- Wang, X., Li, Q., Sui, J., Zhang, J., Liu, Z., Du, J. et al. 2019. Isolation and characterization of antagonistic bacteria Paenibacillus jamilae HS-26 and their effects on plant growth. Biomed. Res. Int. 2019: 3638926.
- Wang, Y., Peng, S., Hua, Q., Qiu, C., Wu, P., Liu, X. et al. 2021. The longterm effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Front. Microbiol. 12: 693535. https://doi.org/10.3389/fmicb.2021.693535
- Xue, Y. Y., Ye, W. and Yang, S. 2019. Isolation and identification of a phosphate solubilizing bacteria and its growth promoting effect. Agric. Res. Arid Areas 37: 253-262.
- Yun, C. Y. and Chong, Y. H. 2016. Isolation and characterization of phosphate solubilizing bacteria Pantoea species as a plant growth promoting rhizobacteria. J. Life Sci. 26: 1163-1168. https://doi.org/10.5352/JLS.2016.26.10.1163