Acknowledgement
The authors are thankful to the anonymous reviewer for his/her helpful comments on the paper.
References
- Z. Ahmed and N. D. Baruah, New congruences for ℓ-regular partitions for ℓ ∈ {5, 6, 7, 49}, Ramanujan J. 40 (2016), no. 3, 649-668. https://doi.org/10.1007/s11139-015-9752-2
- N. D. Baruah and H. Das, Generating functions and congruences for 9-regular and 27-regular partitions in 3 colours, Hardy-Ramanujan J. 44 (2021), 101-115.
- N. D. Baruah and K. Nath, Infinite families of arithmetic identities and congruences for bipartitions with 3-cores, J. Number Theory 149 (2015), 92-104. https://doi.org/10.1016/j.jnt.2014.10.010
- B. C. Berndt, Ramanujan's notebooks. Part III, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0965-2
- R. Carlson and J. J. Webb, Infinite families of infinite families of congruences for kregular partitions, Ramanujan J. 33 (2014), no. 3, 329-337. https://doi.org/10.1007/s11139-013-9523-x
- H.-C. Chan, Ramanujan's cubic continued fraction and an analog of his "most beautiful identity", Int. J. Number Theory 6 (2010), no. 3, 673-680. https://doi.org/10.1142/S1793042110003150
- H.-C. Chan, Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function, Int. J. Number Theory 6 (2010), no. 4, 819-834. https://doi.org/10.1142/S1793042110003241
- H.-C. Chan, Distribution of a certain partition function modulo powers of primes, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 4, 625-634. https://doi.org/10.1007/s10114-011-8620-2
- H. H. Chan and P. C. Toh, New analogues of Ramanujan's partition identities, J. Number Theory 130 (2010), no. 9, 1898-1913. https://doi.org/10.1016/j.jnt.2010.02.017
- B. Dandurand and D. Penniston, ℓ-divisibility of ℓ-regular partition functions, Ramanujan J. 19 (2009), no. 1, 63-70. https://doi.org/10.1007/s11139-007-9042-8
- D. S. Gireesh, C. Shivashankar, and M. S. M. Naika, On 3- and 9-regular cubic partitions, J. Integer Seq. 23 (2020), no. 7, Art. 20.7.2, 12 pp.
- M. D. Hirschhorn, Cubic partitions modulo powers of 5, Ramanujan J. 51 (2020), no. 1, 67-84. https://doi.org/10.1007/s11139-018-0074-z
- M. Hirschhorn, F. Garvan, and J. Borwein, Cubic analogues of the Jacobian theta function θ (z, q), Canad. J. Math. 45 (1993), no. 4, 673-694. https://doi.org/10.4153/CJM1993-038-2
- Q.-H. Hou, L. H. Sun, and L. Zhang, Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7, Adv. in Appl. Math. 70 (2015), 32-44. https://doi.org/10.1016/j.aam.2015.06.005
- B. L. S. Lin, Arithmetic of the 7-regular bipartition function modulo 3, Ramanujan J. 37 (2015), no. 3, 469-478. https://doi.org/10.1007/s11139-013-9542-7
- S. Ramanujan, Congruence properties of partitions, Proc. London Math. Soc. 18 (1920), 19.
- S. Ramanujan, Congruence properties of partitions, Math. Z. 19 (1921), no. 1-2, 147-153. https://doi.org/10.1007/BF01378341
- S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.
- S. Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge Philos. Soc. 19 (1919), 207-210.
- J. J. Webb, Arithmetic of the 13-regular partition function modulo 3, Ramanujan J. 25 (2011), no. 1, 49-56. https://doi.org/10.1007/s11139-010-9227-4
- X. Xiong, The number of cubic partitions modulo powers of 5, Sci. Sin. Math. 41 (2011), no. 1, 1-15. https://doi.org/10.1360/012010-517