DOI QR코드

DOI QR Code

동적 혼잡통행료 적용을 위한 시공간 범위 설정에 관한 연구

A Study on the Establishment of Spatiotemporal Scope for Dynamic Congestion Pricing

  • KIM, Min-Jeong (Dept. of Urban Planning and Engineering, Dong-A University) ;
  • KIM, Hoe-Kyoung (Dept. of Urban Planning and Engineering, Dong-A University)
  • 투고 : 2022.06.02
  • 심사 : 2022.06.24
  • 발행 : 2022.06.30

초록

한국의 경제성장과 함께 인구와 차량의 대규모 도시 집중에 따라 심각한 도시교통 문제가 초래되고 있다. 혼잡통행료의 징수는 교통수요를 관리하기 위한 가장 효과적인 정책으로 평가받고 있지만 대부분 혼잡이 발생하는 지점이나 교통축을 중심으로 적용되어 그 효과가 제한적이다. 본 연구는 동적 혼잡통행료 징수 체계를 제안하기 위해 부산광역시 206개 교통 분석 존의 평균 통행속도를 이용하여 시공간 큐브 분석(Space-Time Cube Analysis)과 시공간 패턴 마이닝(Emerging Hot Spot Analysis) 기법으로 면적인 개념의 동적 혼잡구역을 도출하였다. 분석 결과, 비 첨두시간인 0시~7시에는 핫스팟이 형성되지 않고, 7시~24시에는 동적 핫스팟이 형성되는 것으로 나타났다. 특히, 특정 시간대(18시~20시)와 특정 지역(서면, 광복동)에 교통 혼잡이 집중하는 것을 확인할 수 있었다. 따라서, 동적 혼잡통행료의 징수를 위한 시공간의 분석을 통해 도심에서의 교통수요 관리의 효과가 극대화될 것으로 기대한다.

Large-scale urban concentration of population and vehicles due to economic growth in Korea has been causing serious urban transport problems. Although the collection of congestion pricing has been evaluated as the most effective transportation policy to alleviate traffic demand, its effectiveness is very limited as it was just executed around congested points or along main arterial roads. This study derived dynamic congestion zones with the average travel speed of 206 traffic analysis zones in Busan Metropolitan City to propose a dynamic congestion pricing collection system by employing Space-Time Cube Analysis and Emerging Hot Spot Analysis. As a result, dynamic hot spots were formed from 7h to 24h and particularly, traffic congestion was severely deteriorated from 18h to 20h around Seomyeon and Gwangbok-dong. Therefore, it is expected that the effect of dynamic congestion pricing will be maximized in managing traffic demand in the city center.

키워드

과제정보

본 연구는 한국연구재단(과학기술정보통신부)의 연구비를 지원받아 수행한 과제입니다(NRF-2017R1C1B2010451).

참고문헌

  1. Anbaroglu, B., Heydecker, B. and Cheng, T. 2014. Spatio-temporal clustering for non -recurrent traffic congestion detection on urban road networks. Transportation Research Part C: Emerging Technologies, 48:47-65. https://doi.org/10.1016/j.trc.2014.08.002
  2. Byeon, W.H. and Kim, H.S. 2004. Stockholm City Congestion Toll Collection System. Transportation Technology and Policy 1 (2): 71-84.
  3. Cheng, Q., Liu, Z., Liu, F. and Jia, R. 2017. Urban dynamic congestion pricing: an overview and emerging research needs. International Journal of Urban Sciences, 21(sup1):3-18. https://doi.org/10.1080/12265934.2016.1227275
  4. Cheng, Q., Liu, Z. and Szeto, W. Y. 2019. A cell-based dynamic congestion pricing scheme considering travel distance and time delay. Transportmetrica B: Transport Dynamics, 7(1):1286-1304. https://doi.org/10.1080/21680566.2019.1602487
  5. Cheon, S.H., Kim, S.M. and LEE. C.Y. 2020. Paradigm Change in Traffic Congestion Cost Estimation and Results of Traffic Congestion Cost Estimation in 2017. Monthly KOTI Magazine on Transport 11-16.
  6. Cheong S.Y. 2006. Cases of Introduction of Foreign Traffic Congestion Toll Policy. Korea Research Institute for Human Settlements Construction Economy 2006 (47):78-85.
  7. Chung, I.H., Chung, S.Y., Lim, Y.T. and Lee, B.J. 2006. A Study on Enhancing the Acceptability of Road Congestion Pricing Policy. Korea Research Institute for Human Settlements 206(32).
  8. Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks. Transportation research procedia, 23:962-979. https://doi.org/10.1016/j.trpro.2017.05.053
  9. Greater London Authority. 2001. The Mayor's Transport Strategy, City of London.
  10. Han, S.Y. 2009. Policy Scheme for Improving Use Efficiency in Domestic Expressway: Focused on Differentiated Pricing System. The Korea Transport Institute. 1-97.
  11. Han, Y. and Moutarde, F. 2013. Statistical traffic state analysis in large-scale transportation networks using locality-preserving non-negative matrix factorisation. IET Intelligent Transport Systems, 7(3):283-295. https://doi.org/10.1049/iet-its.2011.0157
  12. Harrison, B. 1986. Electronic road pricing in Hong Kong: 3. Estimating and evaluating the effects, Traffic Engineering and Control 27(1):13-18.
  13. Holland, E.P. and Watson, P.L. 1978. Traffic restraint in Singapore, Traffic Engineering and Control. 19:14-22.
  14. Im, Y. and Kim, B., 2007. A Multiple User Class Congestion Pricing Model and Equity, Journal of Korean Society of Transportation. 25(5):183-193.
  15. Jang, K., Chung, K. and Yeo, H. 2014. A dynamic pricing strategy for high occupancy toll lanes. Transportation Research Part A: Policy and Practice. 67:69-80. https://doi.org/10.1016/j.tra.2014.05.009
  16. Ji, Y., Luo, J. and Geroliminis, N. 2014. Empirical observations of congestion propagation and dynamic partitioning with probe data for large-scale systems. Transportation Research Record, 2422(1):1-11. https://doi.org/10.3141/2422-01
  17. Larsen, O. and Ramjerdi, F. 1991. Road Pricing as a Means of Financing Investment in Transport Infrastructure-The Case of Oslo, Institute of Transport Economics, Oslo.
  18. Lee, J.Y., Lee, G.Y. and Jang, M.S. 2004. Review of Congestion Toll Introduction Plan on Expressway. Korea Road & Transportation Association 97:14-27.
  19. Li, X., Han, J., Lee, J. G. and Gonzalez, H. 2007. Traffic density-based discovery of hot routes in road networks. In International symposium on spatial and temporal databases. 441-459. Springer, Berlin, Heidelberg.
  20. Mun, S.I., Konishi, K.J. and Yoshikawa, K. 2005. Optimal cordon pricing in a non-monocentric city. Transportation Research Part A: Policy and Practice, 39(7-9): 723-736. https://doi.org/10.1016/j.tra.2005.02.020
  21. Orski, C. K. 2008. Highway tolling has entered the mainstream. Public Works Management & Policy, 12(4):548-550. https://doi.org/10.1177/1087724X08317110
  22. Saeedmanesh, M. and Geroliminis, N. 2017.