DOI QR코드

DOI QR Code

PRR16/Largen Induces Epithelial-Mesenchymal Transition through the Interaction with ABI2 Leading to the Activation of ABL1 Kinase

  • Received : 2022.03.15
  • Accepted : 2022.06.01
  • Published : 2022.07.01

Abstract

Advanced or metastatic breast cancer affects multiple organs and is a leading cause of cancer-related death. Cancer metastasis is associated with epithelial-mesenchymal metastasis (EMT). However, the specific signals that induce and regulate EMT in carcinoma cells remain unclear. PRR16/Largen is a cell size regulator that is independent of mTOR and Hippo signalling pathways. However, little is known about the role PRR16 plays in the EMT process. We found that the expression of PRR16 was increased in mesenchymal breast cancer cell lines. PRR16 overexpression induced EMT in MCF7 breast cancer cells and enhances migration and invasion. To determine how PRR16 induces EMT, the binding proteins for PRR16 were screened, revealing that PRR16 binds to Abl interactor 2 (ABI2). We then investigated whether ABI2 is involved in EMT. Gene silencing of ABI2 induces EMT, leading to enhanced migration and invasion. ABI2 is a gene that codes for a protein that interacts with ABL proto-oncogene 1 (ABL1) kinase. Therefore, we investigated whether the change in ABI2 expression affected the activation of ABL1 kinase. The knockdown of ABI2 and PRR16 overexpression increased the phosphorylation of Y412 in ABL1 kinase. Our results suggest that PRR16 may be involved in EMT by binding to ABI2 and interfering with its inhibition of ABL1 kinase. This indicates that ABL1 kinase inhibitors may be potential therapeutic agents for the treatment of PRR16-related breast cancer.

Keywords

Acknowledgement

This study was supported by a grant from the Basic Science Research Program and the BK21 FOUR program through the NRF (NRF-2018R1A5A2023127, NRF-2020R1A2C3004973, NRF-2020R1I1A1A01074006, and NRF-2020M3E5E2038356), the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Korea (HP20C0131), and the BK21 FOUR program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (MOE, Korea).

References

  1. Allington, T. M., Galliher-Beckley, A. J. and Schiemann, W. P. (2009) Activated Abl kinase inhibits oncogenic transforming growth factor-β signaling and tumorigenesis in mammary tumors. FASEB J. 23, 4231-4243. https://doi.org/10.1096/fj.09-138412
  2. Bai, K. H., He, S. Y., Shu, L. L., Wang, W. D., Lin, S. Y., Zhang, Q. Y., Li, L., Cheng, L. and Dai, Y. J. (2020) Identification of cancer stem cell characteristics in liver hepatocellular carcinoma by WGCNA analysis of transcriptome stemness index. Cancer Med. 9, 4290-4298. https://doi.org/10.1002/cam4.3047
  3. Brabletz, T., Kalluri, R., Nieto, M. A. and Weinberg, R. A. (2018) EMT in cancer. Nat. Rev. Cancer 18, 128-134. https://doi.org/10.1038/nrc.2017.118
  4. Bryce, N. S., Reynolds, A. B., Koleske, A. J. and Weaver, A. M. (2013) WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl. PLoS ONE 8, e64533. https://doi.org/10.1371/journal.pone.0064533
  5. Dai, Z. and Pendergast, A. M. (1995) Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 9, 2569-2582. https://doi.org/10.1101/gad.9.21.2569
  6. Gu, J. J., Rouse, C., Xu, X., Wang, J., Onaitis, M. W. and Pendergast, A. M. (2016) Inactivation of ABL kinases suppresses non-small cell lung cancer metastasis. JCI insight 1, e89647.
  7. Guo, S. and Deng, C. X. (2018) Effect of stromal cells in tumor microenvironment on metastasis initiation. Int. J. Biol. Sci. 14, 2083-2093. https://doi.org/10.7150/ijbs.25720
  8. Huang, J., Qin, Y., Yang, C., Wan, C., Dai, X., Sun, Y., Meng, J., Lu, Y., Li, Y. and Zhang, Z. (2020) Downregulation of ABI2 expression by EBV-miR-BART13-3p induces epithelial-mesenchymal transition of nasopharyngeal carcinoma cells through upregulation of c-JUN/SLUG signaling. Aging (Albany N.Y.) 12, 340-358. https://doi.org/10.18632/aging.102618
  9. Jain, A., Tripathi, R., Turpin, C. P., Wang, C. and Plattner, R. (2017) Abl kinase regulation by BRAF/ERK and cooperation with Akt in melanoma. Oncogene 36, 4585-4596. https://doi.org/10.1038/onc.2017.76
  10. Jones, S. E. (2008) Metastatic breast cancer: the treatment challenge. Clin. Breast Cancer 8, 224-233. https://doi.org/10.3816/CBC.2008.n.025
  11. Kang, J. H., Kim, H. J., Park, M. K. and Lee, C. H. (2017) Sphingosylphosphorylcholine induces thrombospondin-1 secretion in MCF10A cells via ERK2. Biomol. Ther. (Seoul) 25, 625-633. https://doi.org/10.4062/biomolther.2016.228
  12. Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C. U., Voduc, D., Speers, C. H., Nielsen, T. O. and Gelmon, K. (2010) Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28, 3271-3277. https://doi.org/10.1200/JCO.2009.25.9820
  13. Lee, C. H. (2018) Epithelial-mesenchymal transition: initiation by cues from chronic inflammatory tumor microenvironment and termination by anti-inflammatory compounds and specialized pro-resolving lipids. Biochem. Pharmacol. 158, 261-273. https://doi.org/10.1016/j.bcp.2018.10.031
  14. Lee, C. H. (2019) Reversal of epithelial-mesenchymal transition by natural anti-inflammatory and pro-resolving lipids. Cancers 11, 1841. https://doi.org/10.3390/cancers11121841
  15. Lei, Q. Y., Zhang, H., Zhao, B., Zha, Z. Y., Bai, F., Pei, X. H., Zhao, S., Xiong, Y. and Guan, K. L. (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 28, 2426-2436. https://doi.org/10.1128/MCB.01874-07
  16. Lu, X. and Kang, Y. (2007) Organotropism of breast cancer metastasis. J. Mammary Gland Biol. Neoplasia 12, 153-162. https://doi.org/10.1007/s10911-007-9047-3
  17. Luck, K., Kim, D. K., Lambourne, L., Spirohn, K., Begg, B. E., Bian, W., Brignall, R., Cafarelli, T., Campos-Laborie, F. J., Charloteaux, B., Choi, D., Cote, A. G., Daley, M., Deimling, S., Desbuleux, A., Dricot, A., Gebbia, M., Hardy, M. F., Kishore, N., Knapp, J. J., Kovacs, I. A., Lemmens, I., Mee, M. W., Mellor, J. C., Pollis, C., Pons, C., Richardson, A. D., Schlabach, S., Teeking, B., Yadav, A., Babor, M., Balcha, D., Basha, O., Bowman-Colin, C., Chin, S. F., Choi, S. G., Colabella, C., Coppin, G., D'Amata, C., De Ridder, D., De Rouck, S., Duran-Frigola, M., Ennajdaoui, H., Goebels, F., Goehring, L., Gopal, A., Haddad, G., Hatchi, E., Helmy, M., Jacob, Y., Kassa, Y., Landini, S., Li, R., van Lieshout, N., MacWilliams, A., Markey, D., Paulson, J. N., Rangarajan, S., Rasla, J., Rayhan, A., Rolland, T., San-Miguel, A., Shen, Y., Sheykhkarimli, D., Sheynkman, G. M., Simonovsky, E., Tasan, M., Tejeda, A., Tropepe, V., Twizere, J. C., Wang, Y., Weatheritt, R. J., Weile, J., Xia, Y., Yang, X., Yeger-Lotem, E., Zhong, Q., Aloy, P., Bader, G. D., De Las Rivas, J., Gaudet, S., Hao, T., Rak, J., Tavernier, J., Hill, D. E., Vidal, M., Roth, F. P. and Calderwood, M. A. (2020) A reference map of the human binary protein interactome. Nature 580, 402-408. https://doi.org/10.1038/s41586-020-2188-x
  18. Nam, M. W., Kim, C. W. and Choi, K. C. (2022) Epithelial-mesenchymal transition-inducing factors involved in the progression of lung cancers. Biomol. Ther. (Seoul) 30, 213-220. https://doi.org/10.4062/biomolther.2021.178
  19. Peart, O. (2017) Metastatic breast cancer. Radiol. Technol. 88, 519M539M.
  20. Persaud, A., Alberts, P., Amsen, E. M., Xiong, X., Wasmuth, J., Saadon, Z., Fladd, C., Parkinson, J. and Rotin, D. (2009) Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol. Syst. Biol. 5, 333. https://doi.org/10.1038/msb.2009.85
  21. Rho, S. B., Byun, H. J., Kim, B. R. and Lee, C. H. (2021a) Knockdown of LKB1 sensitizes endometrial cancer cells via AMPK activation. Biomol. Ther. (Seoul) 29, 650-657. https://doi.org/10.4062/biomolther.2021.131
  22. Rho, S. B., Lee, K. W., Lee, S. H., Byun, H. J., Kim, B. R. and Lee, C. H. (2021b) Novel anti-angiogenic and anti-tumour activities of the N-terminal domain of NOEY2 via binding to VEGFR-2 in ovarian cancer. Biomol. Ther. (Seoul) 29, 506-518. https://doi.org/10.4062/biomolther.2021.121
  23. Rolland, T., Tasan, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., Yi, S., Lemmens, I., Fontanillo, C., Mosca, R., Kamburov, A., Ghiassian, S. D., Yang, X., Ghamsari, L., Balcha, D., Begg, B. E., Braun, P., Brehme, M., Broly, M. P., Carvunis, A. R., Convery-Zupan, D., Corominas, R., Coulombe-Huntington, J., Dann, E., Dreze, M., Dricot, A., Fan, C., Franzosa, E., Gebreab, F., Gutierrez, B. J., Hardy, M. F., Jin, M., Kang, S., Kiros, R., Lin, G. N., Luck, K., MacWilliams, A., Menche, J., Murray, R. R., Palagi, A., Poulin, M. M., Rambout, X., Rasla, J., Reichert, P., Romero, V., Ruyssinck, E., Sahalie, J. M., Scholz, A., Shah, A. A., Sharma, A., Shen, Y., Spirohn, K., Tam, S., Tejeda, A. O., Trigg, S. A., Twizere, J. C., Vega, K., Walsh, J., Cusick, M. E., Xia, Y., Barabasi, A. L., Iakoucheva, L. M., Aloy, P., De Las Rivas, J., Tavernier, J., Calderwood, M. A., Hill, D. E., Hao, T., Roth, F. P. and Vidal, M. (2014) A proteome-scale map of the human interactome network. Cell 159, 1212-1226. https://doi.org/10.1016/j.cell.2014.10.050
  24. Snezhkina, A., Lukyanova, E., Fedorova, M., Kalinin, D., Melnikova, N., Stepanov, O., Kiseleva, M., Kaprin, A., Pudova, E. and Kudryavtseva, A. (2019) Novel genes associated with the development of carotid Paragangliomas. Mol. Biol. 53, 547-559. https://doi.org/10.1134/s0026893319040137
  25. Suh, Y., Yoon, C., Kim, R., Lim, E., Oh, Y., Hwang, S., An, S., Yoon, G., Gye, M., Yi, J., Kim, M. J. and Lee, S. J. (2013) Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 32, 4873-4882. https://doi.org/10.1038/onc.2012.505
  26. Wang, J., Rouse, C., Jasper, J. S. and Pendergast, A. M. (2016) ABL kinases promote breast cancer osteolytic metastasis by modulating tumor-bone interactions through TAZ and STAT5 signaling. Sci. Signal. 9, ra12. https://doi.org/10.1126/scisignal.aad3210
  27. Wang, W., Li, M., Ponnusamy, S., Chi, Y., Xue, J., Fahmy, B., Fan, M., Miranda-Carboni, G. A., Narayanan, R., Wu, J. and Wu, Z. H. (2020) ABL1-dependent OTULIN phosphorylation promotes genotoxic Wnt/β-catenin activation to enhance drug resistance in breast cancers. Nat. Commun. 11, 3965. https://doi.org/10.1038/s41467-020-17770-9
  28. Xu, X., Zhang, M., Xu, F. and Jiang, S. (2020) Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol. Cancer 19, 165. https://doi.org/10.1186/s12943-020-01276-5
  29. Yamamoto, K., Gandin, V., Sasaki, M., McCracken, S., Li, W., Silvester, J. L., Elia, A. J., Wang, F., Wakutani, Y., Alexandrova, R., Oo, Y. D., Mullen, P. J., Inoue, S., Itsumi, M., Lapin, V., Haight, J., Wakeham, A., Shahinian, A., Ikura, M., Topisirovic, I., Sonenberg, N. and Mak, T. W. (2014) Largen: a molecular regulator of mammalian cell size control. Mol. Cell 53, 904-915. https://doi.org/10.1016/j.molcel.2014.02.028
  30. Zandy, N. L. and Pendergast, A. M. (2008) Abl tyrosine kinases modulate cadherin-dependent adhesion upstream and downstream of Rho family GTPases. Cell Cycle 7, 444-448. https://doi.org/10.4161/cc.7.4.5452
  31. Zandy, N. L., Playford, M. and Pendergast, A. M. (2007) Abl tyrosine kinases regulate cell-cell adhesion through Rho GTPases. Proc. Natl. Acad. Sci. U.S.A. 104, 17686-17691. https://doi.org/10.1073/pnas.0703077104