Acknowledgement
This study was supported by a grant from the Basic Science Research Program and the BK21 FOUR program through the NRF (NRF-2018R1A5A2023127, NRF-2020R1A2C3004973, NRF-2020R1I1A1A01074006, and NRF-2020M3E5E2038356), the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Korea (HP20C0131), and the BK21 FOUR program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (MOE, Korea).
References
- Allington, T. M., Galliher-Beckley, A. J. and Schiemann, W. P. (2009) Activated Abl kinase inhibits oncogenic transforming growth factor-β signaling and tumorigenesis in mammary tumors. FASEB J. 23, 4231-4243. https://doi.org/10.1096/fj.09-138412
- Bai, K. H., He, S. Y., Shu, L. L., Wang, W. D., Lin, S. Y., Zhang, Q. Y., Li, L., Cheng, L. and Dai, Y. J. (2020) Identification of cancer stem cell characteristics in liver hepatocellular carcinoma by WGCNA analysis of transcriptome stemness index. Cancer Med. 9, 4290-4298. https://doi.org/10.1002/cam4.3047
- Brabletz, T., Kalluri, R., Nieto, M. A. and Weinberg, R. A. (2018) EMT in cancer. Nat. Rev. Cancer 18, 128-134. https://doi.org/10.1038/nrc.2017.118
- Bryce, N. S., Reynolds, A. B., Koleske, A. J. and Weaver, A. M. (2013) WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl. PLoS ONE 8, e64533. https://doi.org/10.1371/journal.pone.0064533
- Dai, Z. and Pendergast, A. M. (1995) Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 9, 2569-2582. https://doi.org/10.1101/gad.9.21.2569
- Gu, J. J., Rouse, C., Xu, X., Wang, J., Onaitis, M. W. and Pendergast, A. M. (2016) Inactivation of ABL kinases suppresses non-small cell lung cancer metastasis. JCI insight 1, e89647.
- Guo, S. and Deng, C. X. (2018) Effect of stromal cells in tumor microenvironment on metastasis initiation. Int. J. Biol. Sci. 14, 2083-2093. https://doi.org/10.7150/ijbs.25720
- Huang, J., Qin, Y., Yang, C., Wan, C., Dai, X., Sun, Y., Meng, J., Lu, Y., Li, Y. and Zhang, Z. (2020) Downregulation of ABI2 expression by EBV-miR-BART13-3p induces epithelial-mesenchymal transition of nasopharyngeal carcinoma cells through upregulation of c-JUN/SLUG signaling. Aging (Albany N.Y.) 12, 340-358. https://doi.org/10.18632/aging.102618
- Jain, A., Tripathi, R., Turpin, C. P., Wang, C. and Plattner, R. (2017) Abl kinase regulation by BRAF/ERK and cooperation with Akt in melanoma. Oncogene 36, 4585-4596. https://doi.org/10.1038/onc.2017.76
- Jones, S. E. (2008) Metastatic breast cancer: the treatment challenge. Clin. Breast Cancer 8, 224-233. https://doi.org/10.3816/CBC.2008.n.025
- Kang, J. H., Kim, H. J., Park, M. K. and Lee, C. H. (2017) Sphingosylphosphorylcholine induces thrombospondin-1 secretion in MCF10A cells via ERK2. Biomol. Ther. (Seoul) 25, 625-633. https://doi.org/10.4062/biomolther.2016.228
- Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C. U., Voduc, D., Speers, C. H., Nielsen, T. O. and Gelmon, K. (2010) Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28, 3271-3277. https://doi.org/10.1200/JCO.2009.25.9820
- Lee, C. H. (2018) Epithelial-mesenchymal transition: initiation by cues from chronic inflammatory tumor microenvironment and termination by anti-inflammatory compounds and specialized pro-resolving lipids. Biochem. Pharmacol. 158, 261-273. https://doi.org/10.1016/j.bcp.2018.10.031
- Lee, C. H. (2019) Reversal of epithelial-mesenchymal transition by natural anti-inflammatory and pro-resolving lipids. Cancers 11, 1841. https://doi.org/10.3390/cancers11121841
- Lei, Q. Y., Zhang, H., Zhao, B., Zha, Z. Y., Bai, F., Pei, X. H., Zhao, S., Xiong, Y. and Guan, K. L. (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 28, 2426-2436. https://doi.org/10.1128/MCB.01874-07
- Lu, X. and Kang, Y. (2007) Organotropism of breast cancer metastasis. J. Mammary Gland Biol. Neoplasia 12, 153-162. https://doi.org/10.1007/s10911-007-9047-3
- Luck, K., Kim, D. K., Lambourne, L., Spirohn, K., Begg, B. E., Bian, W., Brignall, R., Cafarelli, T., Campos-Laborie, F. J., Charloteaux, B., Choi, D., Cote, A. G., Daley, M., Deimling, S., Desbuleux, A., Dricot, A., Gebbia, M., Hardy, M. F., Kishore, N., Knapp, J. J., Kovacs, I. A., Lemmens, I., Mee, M. W., Mellor, J. C., Pollis, C., Pons, C., Richardson, A. D., Schlabach, S., Teeking, B., Yadav, A., Babor, M., Balcha, D., Basha, O., Bowman-Colin, C., Chin, S. F., Choi, S. G., Colabella, C., Coppin, G., D'Amata, C., De Ridder, D., De Rouck, S., Duran-Frigola, M., Ennajdaoui, H., Goebels, F., Goehring, L., Gopal, A., Haddad, G., Hatchi, E., Helmy, M., Jacob, Y., Kassa, Y., Landini, S., Li, R., van Lieshout, N., MacWilliams, A., Markey, D., Paulson, J. N., Rangarajan, S., Rasla, J., Rayhan, A., Rolland, T., San-Miguel, A., Shen, Y., Sheykhkarimli, D., Sheynkman, G. M., Simonovsky, E., Tasan, M., Tejeda, A., Tropepe, V., Twizere, J. C., Wang, Y., Weatheritt, R. J., Weile, J., Xia, Y., Yang, X., Yeger-Lotem, E., Zhong, Q., Aloy, P., Bader, G. D., De Las Rivas, J., Gaudet, S., Hao, T., Rak, J., Tavernier, J., Hill, D. E., Vidal, M., Roth, F. P. and Calderwood, M. A. (2020) A reference map of the human binary protein interactome. Nature 580, 402-408. https://doi.org/10.1038/s41586-020-2188-x
- Nam, M. W., Kim, C. W. and Choi, K. C. (2022) Epithelial-mesenchymal transition-inducing factors involved in the progression of lung cancers. Biomol. Ther. (Seoul) 30, 213-220. https://doi.org/10.4062/biomolther.2021.178
- Peart, O. (2017) Metastatic breast cancer. Radiol. Technol. 88, 519M539M.
- Persaud, A., Alberts, P., Amsen, E. M., Xiong, X., Wasmuth, J., Saadon, Z., Fladd, C., Parkinson, J. and Rotin, D. (2009) Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol. Syst. Biol. 5, 333. https://doi.org/10.1038/msb.2009.85
- Rho, S. B., Byun, H. J., Kim, B. R. and Lee, C. H. (2021a) Knockdown of LKB1 sensitizes endometrial cancer cells via AMPK activation. Biomol. Ther. (Seoul) 29, 650-657. https://doi.org/10.4062/biomolther.2021.131
- Rho, S. B., Lee, K. W., Lee, S. H., Byun, H. J., Kim, B. R. and Lee, C. H. (2021b) Novel anti-angiogenic and anti-tumour activities of the N-terminal domain of NOEY2 via binding to VEGFR-2 in ovarian cancer. Biomol. Ther. (Seoul) 29, 506-518. https://doi.org/10.4062/biomolther.2021.121
- Rolland, T., Tasan, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., Yi, S., Lemmens, I., Fontanillo, C., Mosca, R., Kamburov, A., Ghiassian, S. D., Yang, X., Ghamsari, L., Balcha, D., Begg, B. E., Braun, P., Brehme, M., Broly, M. P., Carvunis, A. R., Convery-Zupan, D., Corominas, R., Coulombe-Huntington, J., Dann, E., Dreze, M., Dricot, A., Fan, C., Franzosa, E., Gebreab, F., Gutierrez, B. J., Hardy, M. F., Jin, M., Kang, S., Kiros, R., Lin, G. N., Luck, K., MacWilliams, A., Menche, J., Murray, R. R., Palagi, A., Poulin, M. M., Rambout, X., Rasla, J., Reichert, P., Romero, V., Ruyssinck, E., Sahalie, J. M., Scholz, A., Shah, A. A., Sharma, A., Shen, Y., Spirohn, K., Tam, S., Tejeda, A. O., Trigg, S. A., Twizere, J. C., Vega, K., Walsh, J., Cusick, M. E., Xia, Y., Barabasi, A. L., Iakoucheva, L. M., Aloy, P., De Las Rivas, J., Tavernier, J., Calderwood, M. A., Hill, D. E., Hao, T., Roth, F. P. and Vidal, M. (2014) A proteome-scale map of the human interactome network. Cell 159, 1212-1226. https://doi.org/10.1016/j.cell.2014.10.050
- Snezhkina, A., Lukyanova, E., Fedorova, M., Kalinin, D., Melnikova, N., Stepanov, O., Kiseleva, M., Kaprin, A., Pudova, E. and Kudryavtseva, A. (2019) Novel genes associated with the development of carotid Paragangliomas. Mol. Biol. 53, 547-559. https://doi.org/10.1134/s0026893319040137
- Suh, Y., Yoon, C., Kim, R., Lim, E., Oh, Y., Hwang, S., An, S., Yoon, G., Gye, M., Yi, J., Kim, M. J. and Lee, S. J. (2013) Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 32, 4873-4882. https://doi.org/10.1038/onc.2012.505
- Wang, J., Rouse, C., Jasper, J. S. and Pendergast, A. M. (2016) ABL kinases promote breast cancer osteolytic metastasis by modulating tumor-bone interactions through TAZ and STAT5 signaling. Sci. Signal. 9, ra12. https://doi.org/10.1126/scisignal.aad3210
- Wang, W., Li, M., Ponnusamy, S., Chi, Y., Xue, J., Fahmy, B., Fan, M., Miranda-Carboni, G. A., Narayanan, R., Wu, J. and Wu, Z. H. (2020) ABL1-dependent OTULIN phosphorylation promotes genotoxic Wnt/β-catenin activation to enhance drug resistance in breast cancers. Nat. Commun. 11, 3965. https://doi.org/10.1038/s41467-020-17770-9
- Xu, X., Zhang, M., Xu, F. and Jiang, S. (2020) Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol. Cancer 19, 165. https://doi.org/10.1186/s12943-020-01276-5
- Yamamoto, K., Gandin, V., Sasaki, M., McCracken, S., Li, W., Silvester, J. L., Elia, A. J., Wang, F., Wakutani, Y., Alexandrova, R., Oo, Y. D., Mullen, P. J., Inoue, S., Itsumi, M., Lapin, V., Haight, J., Wakeham, A., Shahinian, A., Ikura, M., Topisirovic, I., Sonenberg, N. and Mak, T. W. (2014) Largen: a molecular regulator of mammalian cell size control. Mol. Cell 53, 904-915. https://doi.org/10.1016/j.molcel.2014.02.028
- Zandy, N. L. and Pendergast, A. M. (2008) Abl tyrosine kinases modulate cadherin-dependent adhesion upstream and downstream of Rho family GTPases. Cell Cycle 7, 444-448. https://doi.org/10.4161/cc.7.4.5452
- Zandy, N. L., Playford, M. and Pendergast, A. M. (2007) Abl tyrosine kinases regulate cell-cell adhesion through Rho GTPases. Proc. Natl. Acad. Sci. U.S.A. 104, 17686-17691. https://doi.org/10.1073/pnas.0703077104