DOI QR코드

DOI QR Code

Benzyl Isothiocyanate-Induced Cytotoxicity via the Inhibition of Autophagy and Lysosomal Function in AGS Cells

  • Po, Wah Wah (College of Pharmacy, Chung-Ang University) ;
  • Choi, Won Seok (College of Pharmacy, Chung-Ang University) ;
  • Khing, Tin Myo (College of Pharmacy, Chung-Ang University) ;
  • Lee, Ji-Yun (College of Pharmacy, Chung-Ang University) ;
  • Lee, Jong Hyuk (College of Pharmacy, Chung-Ang University) ;
  • Bang, Joon Seok (College of Pharmacy, Sookmyung Women's University) ;
  • Min, Young Sil (Department of Pharmaceutical Science, Jungwon University) ;
  • Jeong, Ji Hoon (College of Medicine, Chung-Ang University, and Department of Global Innovative Drugs, Graduate School of Chung-Ang University) ;
  • Sohn, Uy Dong (College of Pharmacy, Chung-Ang University)
  • Received : 2022.02.05
  • Accepted : 2022.04.25
  • Published : 2022.07.01

Abstract

Gastric adenocarcinoma is among the top causes of cancer-related death and is one of the most commonly diagnosed carcinomas worldwide. Benzyl isothiocyanate (BITC) has been reported to inhibit the gastric cancer metastasis. In our previous study, BITC induced apoptosis in AGS cells. The purpose of the present study was to investigate the effect of BITC on autophagy mechanism in AGS cells. First, the AGS cells were treated with 5, 10, or 15 μM BITC for 24 h, followed by an analysis of the autophagy mechanism. The expression level of autophagy proteins involved in different steps of autophagy, such as LC3B, p62/SQSTM1, Atg5-Atg12, Beclin1, p-mTOR/mTOR ratio, and class III PI3K was measured in the BITC-treated cells. Lysosomal function was investigated using cathepsin activity and Bafilomycin A1, an autophagy degradation stage inhibitor. Methods including qPCR, western blotting, and immunocytochemistry were employed to detect the protein expression levels. Acridine orange staining and omnicathepsin assay were conducted to analyze the lysosomal function. siRNA transfection was performed to knock down the LC3B gene. BITC reduced the level of autophagy protein such as Beclin 1, class III PI3K, and Atg5-Atg12. BITC also induced lysosomal dysfunction which was shown as reducing cathepsin activity, protein level of cathepsin, and enlargement of acidic vesicle. Overall, the results showed that the BITC-induced AGS cell death mechanism also comprises the inhibition of the cytoprotective autophagy at both initiation and degradation steps.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology [Grant NRF-2019R1F1A1062070], the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.NRF-2021R1F1A1050004), and the Chung-Ang University Young Scientist Scholarship (CAYSS) program in 2017.

References

  1. Acevo-Rodriguez, P. S., Maldonado, G., Castro-Obregon, S. and Hernandez, G. (2020) Autophagy regulation by the translation machinery and its implications in cancer. Front. Oncol. 10, 322. https://doi.org/10.3389/fonc.2020.00322
  2. Amaravadi, R. K., Kimmelman, A. C. and Debnath, J. (2019) Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167-1181. https://doi.org/10.1158/2159-8290.cd-19-0292
  3. Boreddy, S. R., Pramanik, K. C. and Srivastava, S. K. (2011) Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3K/AKT/FOXO pathway. Clin. Cancer Res. 17, 1784-1795. https://doi.org/10.1158/1078-0432.CCR-10-1891
  4. Brier, L. W., Ge, L., Stjepanovic, G., Thelen, A. M., Hurley, J. H. and Schekman, R. (2019) Regulation of LC3 lipidation by the autophagy-specific class III phosphatidylinositol-3 kinase complex. Mol. Biol. Cell 30, 1098-1107. https://doi.org/10.1091/mbc.e18-11-0743
  5. Cao, Y., Luo, Y., Zou, J., Ouyang, J., Cai, Z., Zeng, X., Ling, H. and Zeng, T. (2019) Autophagy and its role in gastric cancer. Clin. Chim. Acta 489, 10-20. https://doi.org/10.1016/j.cca.2018.11.028
  6. Cermak, S., Kosicek, M., Mladenovic-Djordjevic, A., Smiljanic, K., Kanazir, S. and Hecimovic, S. (2016) Loss of cathepsin B and L leads to lysosomal dysfunction, NPC-like cholesterol sequestration and accumulation of the key Alzheimer's proteins. PLoS ONE 11, e0167428. https://doi.org/10.1371/journal.pone.0167428
  7. Chen, J., Zhang, L., Zhou, H., Wang, W., Luo, Y., Yang, H. and Yi, H. (2018) Inhibition of autophagy promotes cisplatin-induced apoptotic cell death through Atg5 and Beclin 1 in A549 human lung cancer cells. Mol. Med. Rep. 17, 6859-6865.
  8. Chuang, W.-T., Yen, C.-C., Huang, C.-S., Chen, H.-W. and Lii, C.-K. (2020) Benzyl isothiocyanate ameliorates high-fat diet-induced hyperglycemia by enhancing Nrf2-dependent antioxidant defense-mediated IRS-1/AKT/TBC1D1 signaling and GLUT4 expression in skeletal muscle. J. Agric. Food Chem. 68, 15228-15238. https://doi.org/10.1021/acs.jafc.0c06269
  9. Claerhout, S., Lorenzi, P. L., Weinstein, J. N. and Mills, G. B. (2011) Modulation of autophagy and its potential for cancer therapy. Drug Future 36, 919-925. https://doi.org/10.1358/dof.2011.036.12.1711892
  10. Dalby, K. N., Tekedereli, I., Lopez-Berestein, G. and Ozpolat, B. (2010) Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 6, 322-329. https://doi.org/10.4161/auto.6.3.11625
  11. Dinh, T. N., Parat, M.-O., Ong, Y. S. and Khaw, K. Y. (2021) Anticancer activities of dietary benzyl isothiocyanate: a comprehensive review. Pharmacol. Res. 169, 105666. https://doi.org/10.1016/j.phrs.2021.105666
  12. Dossou, A. S. and Basu, A. (2019) The emerging roles of mTORC1 in macromanaging autophagy. Cancers 11, 1422. https://doi.org/10.3390/cancers11101422
  13. Feng, Y., He, D., Yao, Z. and Klionsky, D. J. (2014) The machinery of macroautophagy. Cell Res. 24, 24-41. https://doi.org/10.1038/cr.2013.168
  14. Fulda, S. (2018) Targeting autophagy for the treatment of cancer. Biol. Chem. 399, 673-677. https://doi.org/10.1515/hsz-2018-0105
  15. Ge, L., Zhang, M. and Schekman, R. (2014) Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. eLife 3, e04135. https://doi.org/10.7554/elife.04135
  16. Green, D. R. and Llambi, F. (2015) Cell death signaling. Cold Spring Harbor Perspect. Biol. 7, a006080. https://doi.org/10.1101/cshperspect.a006080
  17. Guo, J. Y., Xia, B. and White, E. (2013) Autophagy-mediated tumor promotion. Cell 155, 1216-1219. https://doi.org/10.1016/j.cell.2013.11.019
  18. Han, K. W. W., Po, W. W., Sohn, U. D. and Kim, H.-J. (2019) Benzyl isothiocyanate induces apoptosis via reactive oxygen species-initiated mitochondrial dysfunction and DR4 and DR5 death receptor activation in gastric adenocarcinoma cells. Biomolecules 9, 839. https://doi.org/10.3390/biom9120839
  19. Ho, C. C., Lai, K. C., Hsu, S. C., Kuo, C. L., Ma, C. Y., Lin, M. L., Yang, J. S. and Chung, J. G. (2011) Benzyl isothiocyanate (BITC) inhibits migration and invasion of human gastric cancer AGS cells via suppressing ERK signal pathways. Hum. Exp. Toxicol. 30, 296-306. https://doi.org/10.1177/0960327110371991
  20. Jaber, N. and Zong, W.-X. (2013) Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function. Ann. N. Y. Acad. Sci. 1280, 48-51. https://doi.org/10.1111/nyas.12026
  21. Jung, M., Lee, J., Seo, H. Y., Lim, J. S. and Kim, E. K. (2015) Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose. PLoS ONE 10, e0116972. https://doi.org/10.1371/journal.pone.0116972
  22. Jung, S., Jeong, H. and Yu, S.-W. (2020) Autophagy as a decisive process for cell death. Exp. Mol. Med. 52, 921-930. https://doi.org/10.1038/s12276-020-0455-4
  23. Kar, R., Singha, P. K., Venkatachalam, M. A. and Saikumar, P. (2009) A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene 28, 2556-2568. https://doi.org/10.1038/onc.2009.118
  24. Lai, K.-C., Huang, A.-C., Hsu, S.-C., Kuo, C.-L., Yang, J.-S., Wu, S.-H. and Chung, J.-G. (2010) Benzyl isothiocyanate (BITC) inhibits migration and invasion of human colon cancer HT29 cells by inhibiting matrix metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC and MAPK signaling pathway. J. Agric. Food Chem. 58, 2935-2942. https://doi.org/10.1021/jf9036694
  25. Lai, K. C., Hsiao, Y. T., Yang, J. L., Ma, Y. S., Huang, Y. P., Chiang, T. A. and Chung, J. G. (2017) Benzyl isothiocyanate and phenethyl isothiocyanate inhibit murine melanoma B16F10 cell migration and invasion in vitro. Int. J. Oncol. 51, 832-840. https://doi.org/10.3892/ijo.2017.4084
  26. Law, B. Y. K., Michelangeli, F., Qu, Y. Q., Xu, S.-W., Han, Y., Mok, S. W. F., Dias, I. R. d. S. R., Javed, M.-u.-H., Chan, W.-K., Xue, W.-W., Yao, X.-J., Zeng, W., Zhang, H., Wang, J.-R., Liu, L. and Wong, V. K. W. (2019) Neferine induces autophagy-dependent cell death in apoptosis-resistant cancers via ryanodine receptor and Ca2+-dependent mechanism. Sci. Rep. 9, 20034. https://doi.org/10.1038/s41598-019-56675-6
  27. Lee, Y. M., Seon, M. R., Cho, H. J., Kim, J.-S. and Park, J. H. Y. (2009) Benzyl isothiocyanate exhibits anti-inflammatory effects in murine macrophages and in mouse skin. J. Mol. Med. 87, 1251. https://doi.org/10.1007/s00109-009-0532-6
  28. Li, I. H., Shih, J.-H., Yeh, T.-Y., Lin, H.-C., Chen, M.-H. and Huang, Y.-S. (2020) Lysosomal dysfunction and autophagy blockade contribute to MDMA-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem. Res. Toxicol. 33, 903-914. https://doi.org/10.1021/acs.chemrestox.9b00437
  29. Li, P., Zhao, Y.-m., Wang, C. and Zhu, H.-p. (2021) Antibacterial activity and main action pathway of benzyl isothiocyanate extracted from papaya seeds. J. Food Sci. 86, 169-176. https://doi.org/10.1111/1750-3841.15539
  30. Li, X., Zhou, Y., Li, Y., Yang, L., Ma, Y., Peng, X., Yang, S., Liu, J. and Li, H. (2019) Autophagy: a novel mechanism of chemoresistance in cancers. Biomed. Pharmacother. 119, 109415. https://doi.org/10.1016/j.biopha.2019.109415
  31. Li, Y. J., Lei, Y. H., Yao, N., Wang, C. R., Hu, N., Ye, W. C., Zhang, D. M. and Chen, Z. S. (2017) Autophagy and multidrug resistance in cancer. Chin. J. Cancer 36, 52. https://doi.org/10.1186/s40880-017-0219-2
  32. Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H. and Levine, B. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676. https://doi.org/10.1038/45257
  33. Lin, J. F., Tsai, T. F., Liao, P. C., Lin, Y. H., Lin, Y. C., Chen, H. E., Chou, K. Y. and Hwang, T. I. (2013) Benzyl isothiocyanate induces protective autophagy in human prostate cancer cells via inhibition of mTOR signaling. Carcinogenesis 34, 406-414. https://doi.org/10.1093/carcin/bgs359
  34. Liu, X., Abe-Kanoh, N., Liu, Y., Zhu, B., Munemasa, S., Nakamura, T., Murata, Y. and Nakamura, Y. (2017) Inhibition of phosphatidylinositide 3-kinase impairs the benzyl isothiocyanate-induced accumulation of autophagic molecules and Nrf2 in human colon cancer cells. Biosci. Biotechnol. Biochem. 81, 2212-2215. https://doi.org/10.1080/09168451.2017.1374830
  35. Ma, Y. S., Lin, J. J., Lin, C. C., Lien, J. C., Peng, S. F., Fan, M. J., Hsu, F. T. and Chung, J. G. (2018) Benzyl isothiocyanate inhibits human brain glioblastoma multiforme GBM 8401 cell xenograft tumor in nude mice in vivo. Environ. Toxicol. 33, 1097-1104. https://doi.org/10.1002/tox.22581
  36. Marino, G., Niso-Santano, M., Baehrecke, E. H. and Kroemer, G. (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81-94. https://doi.org/10.1038/nrm3735
  37. Mathew, R., Karantza-Wadsworth, V. and White, E. (2007) Role of autophagy in cancer. Nat. Rev. Cancer 7, 961-967. https://doi.org/10.1038/nrc2254
  38. Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
  39. Moy, K. A., Yuan, J. M., Chung, F. L., Wang, X. L., Van Den Berg, D., Wang, R., Gao, Y. T. and Yu, M. C. (2009) Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms and gastric cancer risk: a prospective study of men in Shanghai, China. Int. J. Cancer 125, 2652-2659. https://doi.org/10.1002/ijc.24583
  40. Parzych, K. R. and Klionsky, D. J. (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 20, 460-473. https://doi.org/10.1089/ars.2013.5371
  41. Pasquier, B., El-Ahmad, Y., Filoche-Romme, B., Dureuil, C., Fassy, F., Abecassis, P. Y., Mathieu, M., Bertrand, T., Benard, T., Barriere, C., El Batti, S., Letallec, J. P., Sonnefraud, V., Brollo, M., Delbarre, L., Loyau, V., Pilorge, F., Bertin, L., Richepin, P., Arigon, J., Labrosse, J. R., Clement, J., Durand, F., Combet, R., Perraut, P., Leroy, V., Gay, F., Lefrancois, D., Bretin, F., Marquette, J. P., Michot, N., Caron, A., Castell, C., Schio, L., McCort, G., Goulaouic, H., Garcia-Echeverria, C. and Ronan, B. (2015) Discovery of (2S)-8-[(3R)-3-methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)-3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. J. Med. Chem. 58, 376-400. https://doi.org/10.1021/jm5013352
  42. Pugsley, H. R. (2017) Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J. Vis. Exp. 21, 55637.
  43. Rossi, M., Munarriz, E. R., Bartesaghi, S., Milanese, M., Dinsdale, D., Guerra-Martin, M. A., Bampton, E. T. W., Glynn, P., Bonanno, G., Knight, R. A., Nicotera, P. and Melino, G. (2009) Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux. J. Cell Sci. 122, 3330-3339. https://doi.org/10.1242/jcs.048181
  44. Rubio, R. M. and Mohr, I. (2019) Inhibition of ULK1 and Beclin1 by an α-herpesvirus Akt-like Ser/Thr kinase limits autophagy to stimulate virus replication. Proc. Natl. Acad. Sci. U.S.A. 116, 26941-26950. https://doi.org/10.1073/pnas.1915139116
  45. Sehrawat, A., Croix, C. S., Baty, C. J., Watkins, S., Tailor, D., Singh, R. P. and Singh, S. V. (2016) Inhibition of mitochondrial fusion is an early and critical event in breast cancer cell apoptosis by dietary chemopreventative benzyl isothiocyanate. Mitochondrion 30, 67-77. https://doi.org/10.1016/j.mito.2016.06.006
  46. Singh, S. S., Vats, S., Chia, A. Y.-Q., Tan, T. Z., Deng, S., Ong, M. S., Arfuso, F., Yap, C. T., Goh, B. C., Sethi, G., Huang, R. Y.-J., Shen, H. M., Manjithaya, R. and Kumar, A. P. (2018) Dual role of autophagy in hallmarks of cancer. Oncogene 37, 1142-1158. https://doi.org/10.1038/s41388-017-0046-6
  47. Singh, S. V. and Singh, K. (2012) Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis 33, 1833-1842. https://doi.org/10.1093/carcin/bgs216
  48. Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C. T. and Lordick, F. (2020) Gastric cancer. Lancet 396, 635-648. https://doi.org/10.1016/s0140-6736(20)31288-5
  49. Steeves, M. A., Dorsey, F. C. and Cleveland, J. L. (2010) Targeting the autophagy pathway for cancer chemoprevention. Curr. Opin. Cell Biol. 22, 218-225. https://doi.org/10.1016/j.ceb.2009.12.013
  50. Stock, M. and Otto, F. (2005) Gene deregulation in gastric cancer. Gene 360, 1-19. https://doi.org/10.1016/j.gene.2005.06.026
  51. Tang, N.-Y., Chueh, F.-S., Yu, C.-C., Liao, C.-L., Lin, J.-J., Hsia, T.-C., Wu, K.-C., Liu, H.-C., Lu, K.-W. and Chung, J.-G. (2016) Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells. Oncol. Rep. 35, 2089-2096. https://doi.org/10.3892/or.2016.4577
  52. Wang, F., Gomez-Sintes, R. and Boya, P. (2018) Lysosomal membrane permeabilization and cell death. Traffic 19, 918-931. https://doi.org/10.1111/tra.12613
  53. Wang, Y. and Zhang, H. (2019) Regulation of autophagy by mTOR signaling pathway. Adv. Exp. Med. Biol. 1206, 67-83. https://doi.org/10.1007/978-981-15-0602-4_3
  54. Wong, V. K. W., Zeng, W., Chen, J., Yao, X. J., Leung, E. L. H., Wang, Q. Q., Chiu, P., Ko, B. C. B. and Law, B. Y. K. (2017) Tetrandrine, an activator of autophagy, induces autophagic cell death via PKC-α inhibition and mTOR-dependent mechanisms. Front. Pharmacol. 8, 351. https://doi.org/10.3389/fphar.2017.00351
  55. Xiao, D., Bommareddy, A., Kim, S. H., Sehrawat, A., Hahm, E. R. and Singh, S. V. (2012) Benzyl isothiocyanate causes FoxO1-mediated autophagic death in human breast cancer cells. PLoS ONE 7, e32597. https://doi.org/10.1371/journal.pone.0032597
  56. Yeh, Y. T., Hsu, Y. N., Huang, S. Y., Lin, J. S., Chen, Z. F., Chow, N. H., Su, S. H., Shyu, H. W., Lin, C. C., Huang, W. T., Yeh, H., Chih, Y. C., Huang, Y. H. and Su, S. J. (2016) Benzyl isothiocyanate promotes apoptosis of oral cancer cells via an acute redox stress-mediated DNA damage response. Food Chem. Toxicol. 97, 336-345. https://doi.org/10.1016/j.fct.2016.09.028
  57. Yi, H., Wang, K., Du, B., He, L., Ho, H., Qiu, M., Zou, Y., Li, Q., Jin, J., Zhan, Y., Zhao, Z. and Liu, X. (2018) Aleuritolic acid impaired autophagic flux and induced apoptosis in hepatocellular carcinoma HepG2 cells. Molecules 23, 1338. https://doi.org/10.3390/molecules23061338
  58. Yim, W. W.-Y. and Mizushima, N. (2020) Lysosome biology in autophagy. Cell Discov. 6, 6. https://doi.org/10.1038/s41421-020-0141-7
  59. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M. and Tashiro, Y. (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266, 17707-17712. https://doi.org/10.1016/S0021-9258(19)47429-2
  60. Youle, R. J. and Narendra, D. P. (2011) Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9-14. https://doi.org/10.1038/nrm3028
  61. Zhang, C., Feng, X., He, L., Zhang, Y. and Shao, L. (2020) The interrupted effect of autophagic flux and lysosomal function induced by graphene oxide in p62-dependent apoptosis of F98 cells. J. Nanobiotechnol. 18, 52. https://doi.org/10.1186/s12951-020-00605-6
  62. Zhang, Q. C., Pan, Z. H., Liu, B. N., Meng, Z. W., Wu, X., Zhou, Q. H. and Xu, K. (2017) Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism. Acta Pharmacol. Sin. 38, 539-550. https://doi.org/10.1038/aps.2016.146
  63. Zhao, H., Li, Q., Pang, J., Jin, H., Li, H. and Yang, X. (2017) Blocking autophagy enhances the pro-apoptotic effect of bufalin on human gastric cancer cells through endoplasmic reticulum stress. Biol. Open 6, 1416-1422. https://doi.org/10.1242/bio.026344
  64. Zhu, Y., Zhuang, J. X., Wang, Q., Zhang, H. Y. and Yang, P. (2013) Inhibitory effect of benzyl isothiocyanate on proliferation in vitro of human glioma cells. Asian Pac. J. Cancer Prev. 14, 2607-2610. https://doi.org/10.7314/APJCP.2013.14.4.2607