Acknowledgement
This work was supported by grants from the National Cancer Center (NCC-2112500-1) and the Basic Science Research Program NRF (NRF-2020R1A2C3004973), NRF (NRF-2018R1A5A2023127), and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Korea (HP20C0131).
References
- Bertrand, M. J., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J. and Barker, P. A. (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689-700. https://doi.org/10.1016/j.molcel.2008.05.014
- Bi, L., Zhang, C., Yao, Y. and He, Z. (2021) Circ-HIPK3 regulates YAP1 expression by sponging miR-381-3p to promote oral squamous cell carcinoma development. J. Biosci. 46, 20. https://doi.org/10.1007/s12038-021-00142-w
- Blechschmidt, K., Sassen, S., Schmalfeldt, B., Schuster, T., Hofler, H. and Becker, K. F. (2008) The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients. Br. J. Cancer 98, 489-495. https://doi.org/10.1038/sj.bjc.6604115
- Cai, J., Gong, L., Li, G., Guo, J., Yi, X. and Wang, Z. (2021) Exosomes in ovarian cancer ascites promote epithelial-mesenchymal transition of ovarian cancer cells by delivery of miR-6780b-5p. Cell Death Dis. 12, 210. https://doi.org/10.1038/s41419-021-03490-5
- Chen, P. M., Cheng, Y. W., Wu, T. C., Chen, C. Y. and Lee, H. (2015) MnSOD overexpression confers cisplatin resistance in lung adenocarcinoma via the NF-κB/Snail/Bcl-2 pathway. Free Radic. Biol. Med. 79, 127-137. https://doi.org/10.1016/j.freeradbiomed.2014.12.001
- Clarfield, L., Diamond, L. and Jacobson, M. (2022) Risk-reducing options for high-grade serous gynecologic malignancy in BRCA1/2. Curr. Oncol. 29, 2132-2140. https://doi.org/10.3390/curroncol29030172
- Dai, Z., Zhu, W. G., Morrison, C. D., Brena, R. M., Smiraglia, D. J., Raval, A., Wu, Y. Z., Rush, L. J., Ross, P., Molina, J. R., Otterson, G. A. and Plass, C. (2003) A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum. Mol. Genet. 12,791-801. https://doi.org/10.1093/hmg/ddg083
- Debnath, P., Huirem, R. S., Dutta, P. and Palchaudhuri, S. (2022) Epithelial-mesenchymal transition and its transcription factors. Biosci. Rep. 42, BSR20211754. https://doi.org/10.1042/BSR20211754
- Dominguez, D., Montserrat-Sentis, B., Virgos-Soler, A., Guaita, S., Grueso, J., Porta, M., Puig, I., Baulida, J., Franci, C. and Garcia de Herreros, A. (2003) Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol. Cell. Biol. 23, 5078-5089. https://doi.org/10.1128/MCB.23.14.5078-5089.2003
- Dong, C., Wu, Y., Wang, Y., Wang, C., Kang, T., Rychahou, P. G., Chi, Y. I., Evers, B. M. and Zhou, B. P. (2013) Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 32, 1351-1362. https://doi.org/10.1038/onc.2012.169
- Dong, S. M., Byun, H. J., Kim, B. R., Lee, S. H., Trink, B. and Rho, S. B. (2012) Tumor suppressor BLU enhances pro-apoptotic activity of sMEK1 through physical interaction. Cell. Signal. 24, 1208-1214. https://doi.org/10.1016/j.cellsig.2012.02.002
- Elshami, M., Tuffaha, A., Yaseen, A., Alser, M., Al-Slaibi, I., Jabr, H., Ubaiat, S., Khader, S., Khraishi, R., Jaber, I., Abu Arafeh, Z., AlMadhoun, S., Alqattaa, A., Abd El Hadi, A., Barhoush, O., Hijazy, M., Eleyan, T., Alser, A., Abu Hziema, A., Shatat, A., Almakhtoob, F., Mohamad, B., Farhat, W., Abuamra, Y., Mousa, H., Adawi, R., Musallam, A., Abu-El-Noor, N. and Bottcher, B. (2022) Awareness of ovarian cancer risk and protective factors: a national cross-sectional study from Palestine. PLoS ONE 17, e0265452. https://doi.org/10.1371/journal.pone.0265452
- Esposito, I., Kleeff, J., Abiatari, I., Shi, X., Giese, N., Bergmann, F., Roth, W., Friess, H. and Schirmacher, P. (2007) Overexpression of cellular inhibitor of apoptosis protein 2 is an early event in the progression of pancreatic cancer. J. Clin. Pathol. 60, 885-895. https://doi.org/10.1136/jcp.2006.038257
- Ferreira, C., Van Der Valk, P., Span, S., Jonker, J., Postmus, P., Kruyt, F. and Giaccone, G. (2001) Assessment of IAP (inhibitor of apoptosis) proteins as predictors of response to chemotherapy in advanced non-small-cell lung cancer patients. Ann. Oncol. 12, 799-805. https://doi.org/10.1023/A:1011167113067
- Frazzi, R. (2021) BIRC3 and BIRC5: multi-faceted inhibitors in cancer. Cell Biosci. 11, 8. https://doi.org/10.1186/s13578-020-00521-0
- Fu, P. Y., Hu, B., Ma, X. L., Yang, Z. F., Yu, M. C., Sun, H. X., Huang, A., Zhang, X., Wang, J., Hu, Z. Q., Zhou, C. H., Tang, W. G., Ning, R., Xu, Y. and Zhou, J. (2019) New insight into BIRC3: a novel prognostic indicator and a potential therapeutic target for liver cancer. J. Cell. Biochem. 120, 6035-6045. https://doi.org/10.1002/jcb.27890
- Herbert, B. S., Chanoux, R. A., Liu, Y., Baenziger, P. H., Goswami, C. P., McClintick, J. N., Edenberg, H. J., Pennington, R. E., Lipkin, S. M. and Kopelovich, L. (2010) A molecular signature of normal breast epithelial and stromal cells from Li-Fraumeni syndrome mutation carriers. Oncotarget 1, 405-422. https://doi.org/10.18632/oncotarget.175
- Herranz, N., Pasini, D., Diaz, V. M., Franci, C., Gutierrez, A., Dave, N., Escriva, M., Hernandez-Munoz, I., Di Croce, L., Helin, K., Garcia de Herreros, A. and Peiro, S. (2008) Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 28, 4772-4781. https://doi.org/10.1128/MCB.00323-08
- Hojo, N., Huisken, A. L., Wang, H., Chirshev, E., Kim, N. S., Nguyen, S. M., Campos, H., Glackin, C. A., Ioffe, Y. J. and Unternaehrer, J. J. (2018) Snail knockdown reverses stemness and inhibits tumour growth in ovarian cancer. Sci. Rep. 8, 8704. https://doi.org/10.1038/s41598-018-27021-z
- Hou, Z., Peng, H., Ayyanathan, K., Yan, K. P., Langer, E. M., Longmore, G. D. and Rauscher, F. J., III (2008) The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol. Cell. Biol. 28, 3198-3207. https://doi.org/10.1128/MCB.01435-07
- Hou, Z., Peng, H., White, D. E., Wang, P., Lieberman, P. M., Halazonetis, T. and Rauscher, F. J. (2010) 14-3-3 binding sites in the snail protein are essential for snail-mediated transcriptional repression and epithelial-mesenchymal differentiation. Cancer Res. 70, 4385-4393.
- Imoto, I., Tsuda, H., Hirasawa, A., Miura, M., Sakamoto, M., Hirohashi, S. and Inazawa, J. (2002) Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res. 62, 4860-4866.
- Imoto, I., Yang, Z. Q., Pimkhaokham, A., Tsuda, H., Shimada, Y., Imamura, M., Ohki, M. and Inazawa, J. (2001) Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res. 61, 6629-6634.
- Jiang, Y., Nan, H., Shi, N., Hao, W., Dong, J. and Chen, H. (2021) Chlorogenic acid inhibits proliferation in human hepatoma cells by suppressing noncanonical NF-κB signaling pathway and triggering mitochondrial apoptosis. Mol. Biol. Rep. 48, 2351-2364. https://doi.org/10.1007/s11033-021-06267-3
- Jin, H., Yu, Y., Zhang, T., Zhou, X., Zhou, J., Jia, L., Wu, Y., Zhou, B. P. and Feng, Y. (2010) Snail is critical for tumor growth and metastasis of ovarian carcinoma. Int. J. Cancer 126, 2102-2111. https://doi.org/10.1002/ijc.24901
- Kim, H. J., Kim, B., Byun, H. J., Yu, L., Nguyen, T. M., Nguyen, T. H., Do, P. A., Kim, E. J., Cheong, K. A., Kim, K. S., Huy Phung, H., Rahman, M., Jang, J. Y., Rho, S. B., Kang, G. J., Park, M. K., Lee, H., Lee, K., Cho, J., Han, H. K., Kim, S. G., Lee, A. Y. and Lee, C. H. (2021) Resolvin D1 suppresses H2O2-induced senescence in fibroblasts by inducing autophagy through the miR-1299/ARG2/ARL1 axis. Antioxidants 10, 1924. https://doi.org/10.3390/antiox10121924
- Kurrey, N. K., K, A. and Bapat, S. A. (2005) Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol. Oncol. 97, 155-165. https://doi.org/10.1016/j.ygyno.2004.12.043
- Lambert, A. W. and Weinberg, R. A. (2021) Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 21, 325-338. https://doi.org/10.1038/s41568-021-00332-6
- Lee, C. H. (2018) Epithelial-mesenchymal transition: initiation by cues from chronic inflammatory tumor microenvironment and termination by anti-inflammatory compounds and specialized pro-resolving lipids. Biochem. Pharmacol. 158, 261-273. https://doi.org/10.1016/j.bcp.2018.10.031
- Lee, C. H. (2019) Reversal of epithelial-mesenchymal transition by natural anti-inflammatory and pro-resolving lipids. Cancers (Basel) 11, 1841. https://doi.org/10.3390/cancers11121841
- Li, X., Yang, Y. and Ashwell, J. D. (2002) TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416, 345-347. https://doi.org/10.1038/416345a
- Lili, L. N., Matyunina, L. V., Walker, L., Wells, S. L., Benigno, B. B. and McDonald, J. F. (2013) Molecular profiling supports the role of epithelial-to-mesenchymal transition (EMT) in ovarian cancer metastasis. J. Ovarian Res. 6, 49. https://doi.org/10.1186/1757-2215-6-49
- Lin, Y., Wu, Y., Li, J., Dong, C., Ye, X., Chi, Y. I., Evers, B. M. and Zhou, B. P. (2010) The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J. 29, 1803-1816. https://doi.org/10.1038/emboj.2010.63
- Liu, C., Chen, Z., Ding, X., Qiao, Y. and Li, B. (2022) Ubiquitin-specific protease 35 (USP35) mediates cisplatin-induced apoptosis by stabilizing BIRC3 in non-small cell lung cancer. Lab. Invest. 102, 524-533. https://doi.org/10.1038/s41374-021-00725-z
- Mace, P. D., Linke, K., Feltham, R., Schumacher, F.-R., Smith, C. A., Vaux, D. L., Silke, J. and Day, C. L. (2008) Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem. 283, 31633-31640. https://doi.org/10.1074/jbc.M804753200
- Mendoza-Rodriguez, M., Romero, H. A., Fuentes-Panana, E. M., Ayala-Sumuano, J.-T. and Meza, I. (2017) IL-1β induces up-regulation of BIRC3, a gene involved in chemoresistance to doxorubicin in breast cancer cells. Cancer Lett. 390, 39-44. https://doi.org/10.1016/j.canlet.2017.01.005
- Nagase, H. and Woessner, J. F., Jr. (1999) Matrix metalloproteinases. J. Biol. Chem. 274, 21491-21494. https://doi.org/10.1074/jbc.274.31.21491
- Nam, M. W., Kim, C. W. and Choi, K. C. (2022) Epithelial-mesenchymal transition-inducing factors involved in the progression of lung cancers. Biomol. Ther. (Seoul) 30, 213-220. https://doi.org/10.4062/biomolther.2021.178
- Nieto, M. A. (2002) The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155-166. https://doi.org/10.1038/nrm757
- Peinado, H., Ballestar, E., Esteller, M. and Cano, A. (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24, 306-319. https://doi.org/10.1128/MCB.24.1.306-319.2004
- Peiro, S., Escriva, M., Puig, I., Barbera, M. J., Dave, N., Herranz, N., Larriba, M. J., Takkunen, M., Franci, C., Munoz, A., Virtanen, I., Baulida, J. and Garcia de Herreros, A. (2006) Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res. 34, 2077-2084. https://doi.org/10.1093/nar/gkl141
- Rho, S. B., Byun, H. J., Kim, B. R. and Lee, C. H. (2021a) Knockdown of LKB1 sensitizes endometrial cancer cells via AMPK activation. Biomol. Ther. (Seoul) 29, 650-657. https://doi.org/10.4062/biomolther.2021.131
- Rho, S. B., Kim, M. J., Lee, J. S., Seol, W., Motegi, H., Kim, S. and Shiba, K. (1999) Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc. Natl. Acad. Sci. U.S.A. 96, 4488-4493. https://doi.org/10.1073/pnas.96.8.4488
- Rho, S. B., Lee, K. W., Lee, S. H., Byun, H. J., Kim, B. R. and Lee, C. H. (2021b) Novel anti-angiogenic and anti-tumour activities of the N-terminal domain of NOEY2 via binding to VEGFR-2 in ovarian cancer. Biomol. Ther. (Seoul) 29, 506-518. https://doi.org/10.4062/biomolther.2021.121
- Rho, S. B., Lee, S. H., Byun, H. J., Kim, B. R. and Lee, C. H. (2020) IRF-1 inhibits angiogenic activity of HPV16 E6 oncoprotein in cervical cancer. Int. J. Mol. Sci. 21, 7622. https://doi.org/10.3390/ijms21207622
- Scheau, C., Badarau, I. A., Costache, R., Caruntu, C., Mihai, G. L., Didilescu, A. C., Constantin, C. and Neagu, M. (2019) The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal. Cell. Pathol. 2019, 9423907.
- Snijders, A. M., Schmidt, B. L., Fridlyand, J., Dekker, N., Pinkel, D., Jordan, R. C. and Albertson, D. G. (2005) Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 24, 4232-4242. https://doi.org/10.1038/sj.onc.1208601
- Vergara, D., Merlot, B., Lucot, J. P., Collinet, P., Vinatier, D., Fournier, I. and Salzet, M. (2010) Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 291, 59-66. https://doi.org/10.1016/j.canlet.2009.09.017
- Wu, Q., Zhang, Y., An, H., Sun, W., Wang, R., Liu, M. and Zhang, K. (2021a) The landscape and biological relevance of aberrant alternative splicing events in esophageal squamous cell carcinoma. Oncogene 40, 4184-4197. https://doi.org/10.1038/s41388-021-01849-8
- Wu, S., Zang, Q., Xing, Z., Li, X., Leng, J., Liu, Y., Wang, X. and Yang, J. (2021b) A pan-cancer analysis of the BIRC gene family and its association with prognosis, tumor microenvironment, and therapeutic targets. Crit. Rev. Eukaryot. Gene Expr. 31, 35-48
- Wu, Y., Evers, B. M. and Zhou, B. P. (2009) Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J. Biol. Chem. 284, 640-648. https://doi.org/10.1074/jbc.M806916200
- Wu, Y. and Zhou, B. P. (2010) Snail: more than EMT. Cell Adh. Migr. 4, 199-203. https://doi.org/10.4161/cam.4.2.10943
- Yokoyama, K., Kamata, N., Fujimoto, R., Tsutsumi, S., Tomonari, M., Taki, M., Hosokawa, H. and Nagayama, M. (2003) Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int. J. Oncol. 22, 891-898.
- Yoneda, T., Imaizumi, K., Maeda, M., Yui, D., Manabe, T., Katayama, T., Sato, N., Gomi, F., Morihara, T., Mori, Y., Miyoshi, K., Hitomi, J., Ugawa, S., Yamada, S., Okabe, M. and Tohyama, M. (2000) Regulatory mechanisms of TRAF2-mediated signal transduction by Bcl10, a MALT lymphoma-associated protein. J. Biol. Chem. 275, 11114-11120. https://doi.org/10.1074/jbc.275.15.11114
- Yu, L., Kim, H. J., Park, M. K., Byun, H. J., Kim, E. J., Kim, B., Nguyen, M. T., Kim, J. H., Kang, G. J., Lee, H., Kim, S. Y., Rho, S. B. and Lee, C. H. (2021a) Ethacrynic acid, a loop diuretic, suppresses epithelial-mesenchymal transition of A549 lung cancer cells via blocking of NDP-induced WNT signaling. Biochem. Pharmacol. 183, 114339. https://doi.org/10.1016/j.bcp.2020.114339
- Yu, Q., Jobin, C. and Thomas, R. M. (2021b) Implications of the microbiome in the development and treatment of pancreatic cancer: thinking outside of the box by looking inside the gut. Neoplasia 23, 246-256. https://doi.org/10.1016/j.neo.2020.12.008
- Yuan, H., Kajiyama, H., Ito, S., Yoshikawa, N., Hyodo, T., Asano, E., Hasegawa, H., Maeda, M., Shibata, K., Hamaguchi, M., Kikkawa, F. and Senga, T. (2013) ALX1 induces snail expression to promote epithelial-to-mesenchymal transition and invasion of ovarian cancer cells. Cancer Res. 73, 1581-1590.
- Zender, L., Spector, M. S., Xue, W., Flemming, P., Cordon-Cardo, C., Silke, J., Fan, S.-T., Luk, J. M., Wigler, M., Hannon, G. J., Mu, D., Lucito, R., Powers, S. and Lowe, S. W. (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253-1267. https://doi.org/10.1016/j.cell.2006.05.030
- Zheng, C., Kabaleeswaran, V., Wang, Y., Cheng, G. and Wu, H. (2010) Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol. Cell 38, 101-113. https://doi.org/10.1016/j.molcel.2010.03.009