DOI QR코드

DOI QR Code

The Study on Pressure Confine Effect of Blast Stemming Material and Plug Device Using Numerical Analysis Technique

수치해석 기법을 이용한 발파전색재료 및 플러그 장치의 폭발압 저항 효과에 관한 연구

  • 고영훈 (한국건설기술연구원 지반연구본부) ;
  • 곽기석 (한국건설기술연구원 지반연구본부) ;
  • 서승환 (한국건설기술연구원 지반연구본부) ;
  • 정영준 (주식회사 석성발파건설) ;
  • 김식 (주식회사 석성발파건설) ;
  • 정문경 (한국건설기술연구원 지반연구본부)
  • Received : 2022.05.12
  • Accepted : 2022.06.02
  • Published : 2022.06.30

Abstract

Numerical simulation is the most widely used methods for evaluating blasting performance. This study, conducted the numerical analysis of shock chamber model to evaluate the pressure confine effect of the stemming material and plug device. The stemming effect was compared and evaluated with that of the STF-based stemming material currently under development and sand, which is a commonly used blast stemming material. Furthermore, to verify of enhancement the confine effect inside blast hole pressure, three types of stemming plugs were adopted for the numerical analysis. The numerical simulation results revealed that the STF-based stemming materials were superior to the general stemming material. Also, It is evaluated that the STF-based stemming and Plug system can not only prevent detonation gas from overflowing the borehole prematurely, but also prolong the action time and scope of detonation gas in the borehole effective.

본 연구에서는 발파전색재료와 밀폐용 플러그 장치의 압력 구속 효과를 평가하기 위하여 충격챔버 모델을 구성하여 발파 수치해석을 수행하였다. 현재 개발 중인 전단농화유체 기반의 전색물질과 일반적으로 사용되고 있는 전색재료인 모래의 전색효과를 서로 비교하였다. 또한 발파공 내부압력의 구속효과 강화를 위한 세 가지 형태의 플러그 장치를 시뮬레이션에 적용하였다. 그 결과로서 전단농화유체 기반의 전색재료가 모래전색보다 전색효과가 더 우수한 것으로 나타났다. 또한 전단농화유체 기반의 전색물질과 플러그 장치를 복합적으로 사용하였을 때 발파공 내의 폭발가스의 작용 시간과 영향범위를 효과적으로 향상할 수 있을 것으로 분석되었다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원의 주요사업 '(22주요-대5-중기지원국내-기술사업화) "고속 충격파 반응형 전단농화유체를 이용한 발파전색 기술개발"의 지원으로 수행되었습니다.

References

  1. 고영훈, 정승원, 양형식, 2018, 디커플링 조건 및 폴리머 겔 적용에 따른 발파공 발파위력 영향에 관한 수치해석 연구, 화약.발파(대한화약발파공학회지), 제36권 제2호, pp. 1-9. https://doi.org/10.22704/KSEE.2018.36.2.001
  2. Brinkmann J. R., 1990, An experimental study of the effects of shock and gas penetration in blasting, Proceedings of 3th International Symposium on Rock Fragmentation by Blasting, pp. 55-66.
  3. Chiappetta, R. F., Bauer, A., Dailey, P. J. and Burchell, S.L, 1983, The use of high-speed motion picture photography in blast evaluation and design, ISEE. Dallas. Texas, pp. 1-43.
  4. Choudhary, B. S. and Arora, Rajesh, 2017, Screened drill cuttings in blast hole for tamping of stemming to reduce generation of fly rock, J. Mines Met. pp. 19-23.
  5. Cho, S. H. and Kaneko, K, 2004, Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int J Rock Mech Min Sci, Vol. 41, No. 5, pp. 771-784. https://doi.org/10.1016/j.ijrmms.2004.02.006
  6. Crawford, N. C., Popp, L. B, Johns, K. E, Caire, L. M, Peterson, B. N, Liberatore M. W, 2013, Shear thickening of corn starch suspensions: Does concentration matter?, Journal of Colloid and Interface Science, Vol. 396, pp. 83-89. https://doi.org/10.1016/j.jcis.2013.01.024
  7. Cui, Z., Cui, D. and Yan, C. L, 2010, Water-silt composite blasting for tunnelling, International Journal of Rock Mechanics and Mining Sciences, Vol. 47, No. 6, pp. 1034-1037. https://doi.org/10.1016/j.ijrmms.2010.06.004
  8. Dowding, C. H. and Aimone, C. T, 1985, Multiple blast-hole stresses and measured fragmentation, Rock Mech Rock Eng, pp. 17-36.
  9. Eloranta, J., 1994, Stemming selection for large diameter blast holes, 23th Annual conf on Explosive and Blasting Techniques, ISEE, pp. 1-11.
  10. Floyd, J. L., 1999, Explosive energy relief-the key to controlling over break, Proceedings of the Explosion, pp. 147-153.
  11. Jimeno, C. L., Jimeno, E. L. and Carcedo, F. J, 1995, Drilling and Blasting of Rocks, pp. 183-184.
  12. Konya, C. J. and A, 2018, Effect of Hole Stemming Practices on Energy Efficiecy of Comminution, Energy Efficiency in the Minerals Industry, pp. 31-53.
  13. Lownds, C. M., 2000, Measured shock pressure in the splitting of domension stone, Proceedings of first world conference on exlposives & blasting technique, germany, pp. 241-246.
  14. Luo, Y. and Wu, S, 2006, Study on length of stemming material and its effect in hole-charged blasting, Mechanics in Engineering, Vol. 28, No. 2, pp. 48-52. https://doi.org/10.3969/j.issn.1000-0879.2006.02.011
  15. Snelling, O. W. and Hall, C, 1912, The effect of stemming on the efficiency of explosives. USBM-TP, pp. 1-17.
  16. Skaggs, R. D., 1998, Blast Plug. US patent 5841060.
  17. Shann, P. C., 2002, Stemming arrangement and method for blast holes. US patent 006386111B1.
  18. Tang, Z., Zhicheng, Z. and Lu, Wen, 1998, The influence of stemming and stemming methods in blasting boreholes to blasting effect, J. of Southwest Institute of Technology, Vol. 13, No. 2, pp. 64-66.
  19. Wang, C., 1999, The action of the blasthole plug, J. of Univ. of Hydr. and Electric Eng, Vol. 21, No. 1, pp. 45-49.
  20. Worsey, P. N., 1988, Mechanical stemming construction for blast holes and method. US patent 004754705.
  21. Wu, X., Yin, Q. and Huang, C, 2015, Experimental study on pressure, stress state, and temperature-dependent dynamic behavior of shear thickening fluid subjected to laser induced shock, Journal of Applied Physics, Vol. 118.
  22. Zong, Q, 1996., theoretical discussion of movement rule of stemming in blast holes, Blasting, Vol. 13, No. 1, pp. 8-11.
  23. Zhang, Z. X., 2016, Stemming and Charge Length, Rock Fracture and Blasting, pp. 271-281.
  24. Zhu, Z., Xie, H. and Mohanty, B, 2008, Int. J. Rock Mech. Min. Sci, 45, pp. 111-121. https://doi.org/10.1016/j.ijrmms.2007.04.012