DOI QR코드

DOI QR Code

V2N 네트워크 지연 환경에서 저속 이동 로봇 원격주행 모의실험을 통한 성능 분석

Analysis of Remote Driving Simulation Performance for Low-speed Mobile Robot under V2N Network Delay Environment

  • 송유승 (한국전자통신연구원 자율주행지능연구실) ;
  • 민경욱 (한국전자통신연구원 자율주행지능연구실) ;
  • 최정단 (한국전자통신연구원 지능로보틱스연구본부)
  • 투고 : 2022.04.15
  • 심사 : 2022.05.23
  • 발행 : 2022.06.30

초록

국내외적으로 V2X 통신기술을 접목한 C-ITS 사업 및 자율주행 고도화 실증연구가 활발히 진행되고 있다. 실증 초기 1단계에서는 경고메시지, 차량주행정보, 교통정보 등의 방송서비스에서 점차 실시간성을 요구하는 군집주행, 원격주행, 인식정보공유 등의 고도화된 서비스로 발전하고 있다. 또한, 네트워크 서비스 고도화를 위해 전송속도와 지연시간 등을 개선하기 위한 기술개발이 여러모로 진행되고 있다. 본 논문에서는 3GPP 표준 기반 C-V2X 기술을 바탕으로 안정적인 드로이드 형태의 저속 로봇의 원격주행 서비스 제공을 위해 네트워크 지연시간 측면에서 요구사항을 분석하였다. 원격주행 성능평가를 위해 오퍼레이터를 포함한 시스템 모델링을 통한 시뮬레이션을 수행하였고, 해당 실험 조건에서 90% 이상의 성능 만족을 위해 30ms 이내의 코어 및 액세스 네트워크 지연시간이 요구된다는 것을 알 수 있었다.

Recently, cooperative intelligent transport systems (C-ITS) testbeds have been deployed in great numbers, and advanced autonomous driving research using V2X communication technology has been conducted actively worldwide. In particular, the broadcasting services in their beginning days, giving warning messages, basic safety messages, traffic information, etc., gradually developed into advanced network services, such as platooning, remote driving, and sensor sharing, that need to perform real-time. In addition, technologies improving these advanced network services' throughput and latency are being developed on many fronts to support these services. Notably, this research analyzed the network latency requirements of the advanced network services to develop a remote driving service for the droid type low-speed robot based on the 3GPP C-V2X communication technology. Subsequently, this remote driving service's performance was evaluated using system modeling (that included the operator behavior) and simulation. This evaluation showed that a respective core and access network latency of less than 30 ms was required to meet more than 90 % of the remote driving service's performance requirements under the given test conditions.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음 (과제번호 21AMDP-C161756-01)

참고문헌

  1. 3rd Generation Partnership(3GPP) Technical Report 22.886 (V16.2.0)(2018), Study on enhancement of 3GPP support for 5G V2X services, Release 16 December 2018.
  2. 3rd Generation Partnership(3GPP) Technical Report 36.885 (V14.0.0)(2016), Study on LTE-Based V2X Services, Release 14 June 2016.
  3. 3rd Generation Partnership(3GPP) Technical Report 37.910 (V16.1.0)(2019), Study on Self-Evaluation towards IMT-2020 Submission, Release 16 September 2019.
  4. 5G Automotive Association(5GAA) White Paper(2019), Cellular V2X Conclusions Based on Evaluation of Available Architectural Options, February 2019.
  5. Butt, F. A., Chattha, J. N., Ahmad, J., Zia, M. U., Rizwan, M. and Naqvi, I. H.(2022), "On the integration of enabling wireless technologies and sensor fusion for next-generation connected and autonomous vehicles", IEEE Access, vol. 10, pp.14643-14668. https://doi.org/10.1109/ACCESS.2022.3145972
  6. Chen, S., Hu, J., Shi, Y., Zhao, L. and Li, W.(2020), "A vision of C-V2X: Technologies, field testing, and challenges with chinese development", IEEE Internet of Things Journal, vol. 7, no. 5, pp.3872-3881. https://doi.org/10.1109/jiot.2020.2974823
  7. Davis, J., Smyth, C. and McDowell, K.(2010), "The effects of time lag on driving performance and a possible mitigation", IEEE Transactions on Robotics, vol. 26, no. 3, pp.590-593. https://doi.org/10.1109/TRO.2010.2046695
  8. Kanavos, A., Fragkos, D. and Kaloxylos, A.(2021), "V2X communication over cellular networks: Capabilities and challenges", Telecom, Multidisciplinary Digital Publishing Institute, vol. 2, no. 1, pp.1-26.
  9. Liu, R., Kwak, D., Devarakonda, S., Bekris, K. and Iftode, L.(2017), "Investigating remote driving over the LTE network", In Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp.264-269.
  10. Neumeier, S., Walelgne, E. A., Bajpai, V., Ott, J. and Facchi, C.(2019), "Measuring the feasibility of teleoperated driving in mobile networks", Network Traffic Measurement and Analysis Conference(TMA), pp.113-120.
  11. Nise, N. S.(2004), Control systems engineering (4th ed.), John Wiley & Sons.
  12. NIST Technical Note 1557(2011), Measurements and Models for the Wireless Channel in a Ground-Based Urban Setting in Two Public Safety Frequency Bands, January 2011.
  13. Papadimitratos, P., De La Fortelle, A., Evenssen, K., Brignolo, R. and Cosenza, S.(2009), "Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation", IEEE Communications Magazine, vol. 47, no. 11, pp.84-95. https://doi.org/10.1109/MCOM.2009.5307471
  14. Song, Y. S. and Choi, H. K.(2017), "Analysis of V2V broadcast performance limit for WAVE communication systems using two-ray path loss model", Electronics and Telecommunications Research Institute Journal, vol. 39, no. 2, pp.213-221.
  15. Storms, J. and Tilbury, D.(2015), "Equating user performance among communication latency distributions and simulation fidelities for a teleoperated mobile robot", 2015 IEEE International Conference on Robotics and Automation(ICRA).