DOI QR코드

DOI QR Code

Bending analysis of power-law sandwich FGM beams under thermal conditions

  • Garg, Aman (Department of Civil and Environmental Engineering, The NorthCap University) ;
  • Belarbi, Mohamed-Ouejdi (Laboratoire de Genie Energetique et Materiaux, LGEM, Faculte de la Science et de lo Technologie, Universite de Biskra) ;
  • Li, Li (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2022.04.06
  • Accepted : 2022.05.18
  • Published : 2022.05.25

Abstract

Broad writing on the examination of sandwich structures mirrors the significance of incorporating thermal loadings during their investigation stage. In the current work, an endeavor has been made to concentrate on sandwich FGM beams' bending behaving under thermal loadings utilizing shear deformation theory. Temperature-dependent material properties are used during the analysis. The formulation includes the transverse displacement field, which helps better predict the behavior of thick FGM beams. Three-different thermal profiles across the thickness of the beam are assumed during the analysis. The study has been carried out on both symmetric and unsymmetric sandwich FGM beams. It has been observed that the bending behavior of sandwich FGM beams is impacted by the temperature profile to which it is subjected. Power-law exponent and thickness of core also affect the behavior of the beam.

Keywords

Acknowledgement

The research described in this paper received no financial grant in any form.

References

  1. Abualnour, M., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  2. Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
  3. Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
  4. Babaei, H., Kiani, Y. and Eslami, M.R. (2018), "Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment", Thin Wall. Struct., 132, 48-57. https://doi.org/10.1016/j.tws.2018.08.008.
  5. Bekhadda, A., Cheikh, A., Bensaid, I., Hadjoui, A. and Daikh, A.A. (2019), "A novel first order refined sheardeformation beam theory for vibration and buckling analysis of continuously graded beams", Adv. Aircraft Spacecraft Sci., 6(3), 189-206. https://doi.org/10.12989/aas.2019.6.3.189.
  6. Belarbi, M.O., Tati, A., Ounis, H. and Khechai, A. (2017), "On the free vibration analysis of laminated composite and sandwich plates: a layerwise finite element formulation", Lat. Am. J. Solid. Struct., 14, 2265-2290. https://doi.org/10.1590/1679-78253222.
  7. Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  8. Bouafia, K., Selim, M.M. Bourada, F., Bousahla, A.A. Bourada, M., Tounsi, A., Bedia, E.A.A. and Tounsi A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
  9. Carrera, E. (2003), "Historical review of Zigzag theories for multilayered plates and shells", Appl. Mech. Rev., 56, 287-308. https://doi.org/10.1115/1.1557614.
  10. Chareonsuk, J. and Vessakosol, P. (2011), "Numerical solutions for functionally graded solids under thermal and mechanical loads using a high-order control volume finite element method", Appl. Therm. Eng., 31(2-3), 213-227. https://doi.org/10.1016/j.applthermaleng.2010.09.001.
  11. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
  12. Di Sciuva, M. and Sorrenti, M. (2021), "Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory", J. Sandw. Struct. Mater., 23(3), 760-802. https://doi.org/10.1177/1099636219843970.
  13. Dorduncu, M. (2020), "Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory", Thin Wall. Struct., 146, 106468. https://doi.org/10.1016/j.tws.2019.106468.
  14. Ebrahimi, F., Farazmandnia, N., Kokaba, M.R. and Mahesh, V. (2021), "Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory", Eng. Comput. 37, 921-936. https://doi.org/10.1007/s00366-019-00864-4.
  15. Esmaeilzadeh, M., Golmakani, M.E., Luo, Y. and Bodaghi, M. (2021), "Transient behavior of imperfect bidirectional functionally graded sandwich plates under moving loads", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-021-01521-5.
  16. Farrokh, M. and Taheripur, M. (2021), "Optimization of porosity distribution of FGP beams considering buckling strength", Struct. Eng. Mech., 79(6), 711-722. https://doi.org/10.12989/sem.2021.79.6.711.
  17. Filippi, M., Carrera, E. and Zenkour, A.M. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B Eng., 72, 1-9. https://doi.org/10.1016/j.compositesb.2014.12.004.
  18. Garg, A. and Chalak, H.D. (2019), "A review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin Wall. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.
  19. Garg, A. and Chalak, H.D. (2020), "Analysis of non-skew and skew laminated composite and sandwich plates under hygro-thermo-mechanical conditions including transverse stress variations", J. Sandw. Struct. Mater., 23(8), 3471-3494. https://doi.org/10.1177/1099636220932782.
  20. Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021a), "A review of the analysis of sandwich FGM structures", Comp. Struct. 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
  21. Garg, A., Chalak, H.D. and Chakrabarti, A. (2020a), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
  22. Garg, A., Chalak, H.D. and Chakrabarti, A. (2020b), "Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects", Mech. Bas. Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2020.1814157.
  23. Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2021b), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures", Arch. Comput. Meth. Eng., 1-34. https://doi.org/10.1007/s11831-021-09652-0.
  24. Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024.
  25. Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multidirectional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
  26. Hadji, L., Amoozgar, M. and Tounsi, A. (2022), "Nonlinear thermal buckling of FG plates with porosity", Steel Compos. Struct., 43(5), 711-722. https://doi.org/10.12989/scs.2022.42.5.711.
  27. Hosseini, S.A.H., Moghaddam, M.H.N. and Rahmani, O. (2020), "Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam", Adv. Aircr. Spacecraft Sci., 7(6), 517-536. https://doi.org/10.12989/aas.2020.7.6.517.
  28. Huang, W. and Tahouneh, V. (2021), "Frequency study of porous FGPM beam on two-parameter elastic foundations via Timoshenko theory", Steel Compos. Struct., 40(1), 139-156. https://doi.org/10.12989/scs.2021.40.1.139.
  29. Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
  30. Koizumi, M. and Niino, M. (1995), "Overview of FGM Research in Japan", MRS Bull., 20(1), 19-21. https://doi.org/10.1557/S0883769400048867.
  31. Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Tounsi A. and Hussain M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel Compos. Struct., 41(2), 167-191. https://doi.org/10.12989/scs.2021.41.2.167.
  32. Koutoati, K., Mohri, F. and Daya, E.M. (2021), "Finite element approach of axial bending coupling on static and vibration behaviors of functionally graded material sandwich beams", Mech. Adv. Mater. Struct., 28(15), 1537-1553. https://doi.org/10.1080/15376494.2019.1685144.
  33. Li, D. (2020), "Layerwise theories of laminated composite structures and their applications: a review", Arch. Comput. Meth. Eng., 28, 577-600. https://doi.org/10.1007/s11831-019-09392-2.
  34. Ma, X., Sahmani, S. and Safaei, B. (2021), "Quasi-3D large deflection nonlinear analysis of isogeometric FGM microplates with variable thickness via nonlocal stress-strain gradient elasticity", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01390-y.
  35. Madenci, E. (2021a), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
  36. Madenci, E. (2021b), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157.
  37. Madenci, E. and Ozkili, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  38. Majumdar, A. and Das, D. (2018), "A study on thermal buckling load of clamped functionally graded beams under linear and nonlinear thermal gradient across thickness", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 232(9), 769-784. https://doi.org/10.1177/1464420716649213.
  39. Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006.
  40. Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.
  41. Pandey, S. and Pradyumna, S. (2018a), "Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock", J. Therm. Stress., 41, 543-567. https://doi.org/10.1080/01495739.2017.1422999.
  42. Pandey, S. and Pradyumna, S. (2018b), "Analysis of functionally graded sandwich plates using a higher-order layerwise theory", Compos. Part B, 153, 325-336. https://doi.org/10.1016/j.compositesb.2018.08.121.
  43. Polat, A. (2021), "Examination of contact problem between functionally graded punch and functionally graded layer resting on elastic plane", Struct. Eng. Mech., 78(2), 135-143. https://doi.org/10.12989/sem.2021.78.2.135.
  44. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  45. Rezaiee-Pajand, M., Rajabzadeh-Safaei, N. and Masoodi, A.R. (2020), "An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams", Struct., 28, 1035-1049. https://doi.org/10.1016/j.istruc.2020.08.038.
  46. Sahoo, B., Mehar, K., Sahoo, B., Sharma, N. and Panda, S.K. (2021), "Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01514-4.
  47. Sayyad, A.S. and Ghugal, Y.M. (2019), "Modeling and analysis of functionally graded sandwich beams: a review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
  48. Shi, G. (2007), "A new simple third-order shear deformation theory of plates", Int. J. Solid. Struct., 44(13), 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031.
  49. Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res., 10(1), 25-42. https://doi.org/10.12989/ANR.2021.10.1.025.
  50. Tahir, S.I., Tounsi, A., Chikh, A. Al-Osta1, M.A. Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel Compos. Struct., 42(4), 501-511. https://doi.org/10.12989/scs.2022.42.4.501.
  51. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
  52. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech.-A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  53. Tran, T.T., Nguyen, N.H., Do, T.V., Minh, P.V. and Duc, N.D. (2021), "Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory" J. Sandw. Struct. Mater., 23(3), 906-930. https://doi.org/10.1177/1099636219849268.
  54. Wang, H., Zandi, Y., Gholizadeh, M. and Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional FG nanotube using numerical method", Adv. Nano Res., 10(5), 493-507. https://doi.org/10.12989/anr.2021.10.5.493.
  55. Wattanasakulpong, N., Prusty, G.B. and Kelly, D.W. (2011), "Thermal buckling and elastic vibration of thirdorder shear deformable functionally graded beams", Int. J. Mech. Sci., 53(9), 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005.
  56. Wattanasakulpong, N., Prusty, G.B. and Kelly, D.W. (2013), "Free and forced vibration analysis using improved third-order shear deformation theory for functionally graded plates under high temperature loading", J. Sandw. Struct. Mater., 15(5), 583-606. https://doi.org/10.1177/1099636213495751.
  57. Wu, C.-P. and Li, E. (2021), "A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells", Steel Compos. Struct., 39(3), 291-306. https://doi.org/10.12989/scs.2021.39.3.291.
  58. Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  59. Zhao, J. and Yu, Z. (2021), "On the modeling and simulation of the nonlinear dynamic response of NEMS via a couple of nonlocal strain gradient theory and classical beam theory", Adv. Nano Res., 11(5), 547-563. https://doi.org/10.12989/anr.2021.11.5.547.