Acknowledgement
The research described in this paper received no financial grant in any form.
References
- Abualnour, M., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
- Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
- Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
- Babaei, H., Kiani, Y. and Eslami, M.R. (2018), "Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment", Thin Wall. Struct., 132, 48-57. https://doi.org/10.1016/j.tws.2018.08.008.
- Bekhadda, A., Cheikh, A., Bensaid, I., Hadjoui, A. and Daikh, A.A. (2019), "A novel first order refined sheardeformation beam theory for vibration and buckling analysis of continuously graded beams", Adv. Aircraft Spacecraft Sci., 6(3), 189-206. https://doi.org/10.12989/aas.2019.6.3.189.
- Belarbi, M.O., Tati, A., Ounis, H. and Khechai, A. (2017), "On the free vibration analysis of laminated composite and sandwich plates: a layerwise finite element formulation", Lat. Am. J. Solid. Struct., 14, 2265-2290. https://doi.org/10.1590/1679-78253222.
- Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
- Bouafia, K., Selim, M.M. Bourada, F., Bousahla, A.A. Bourada, M., Tounsi, A., Bedia, E.A.A. and Tounsi A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
- Carrera, E. (2003), "Historical review of Zigzag theories for multilayered plates and shells", Appl. Mech. Rev., 56, 287-308. https://doi.org/10.1115/1.1557614.
- Chareonsuk, J. and Vessakosol, P. (2011), "Numerical solutions for functionally graded solids under thermal and mechanical loads using a high-order control volume finite element method", Appl. Therm. Eng., 31(2-3), 213-227. https://doi.org/10.1016/j.applthermaleng.2010.09.001.
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
- Di Sciuva, M. and Sorrenti, M. (2021), "Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory", J. Sandw. Struct. Mater., 23(3), 760-802. https://doi.org/10.1177/1099636219843970.
- Dorduncu, M. (2020), "Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory", Thin Wall. Struct., 146, 106468. https://doi.org/10.1016/j.tws.2019.106468.
- Ebrahimi, F., Farazmandnia, N., Kokaba, M.R. and Mahesh, V. (2021), "Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory", Eng. Comput. 37, 921-936. https://doi.org/10.1007/s00366-019-00864-4.
- Esmaeilzadeh, M., Golmakani, M.E., Luo, Y. and Bodaghi, M. (2021), "Transient behavior of imperfect bidirectional functionally graded sandwich plates under moving loads", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-021-01521-5.
- Farrokh, M. and Taheripur, M. (2021), "Optimization of porosity distribution of FGP beams considering buckling strength", Struct. Eng. Mech., 79(6), 711-722. https://doi.org/10.12989/sem.2021.79.6.711.
- Filippi, M., Carrera, E. and Zenkour, A.M. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B Eng., 72, 1-9. https://doi.org/10.1016/j.compositesb.2014.12.004.
- Garg, A. and Chalak, H.D. (2019), "A review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin Wall. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.
- Garg, A. and Chalak, H.D. (2020), "Analysis of non-skew and skew laminated composite and sandwich plates under hygro-thermo-mechanical conditions including transverse stress variations", J. Sandw. Struct. Mater., 23(8), 3471-3494. https://doi.org/10.1177/1099636220932782.
- Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021a), "A review of the analysis of sandwich FGM structures", Comp. Struct. 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020a), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020b), "Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects", Mech. Bas. Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2020.1814157.
- Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2021b), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures", Arch. Comput. Meth. Eng., 1-34. https://doi.org/10.1007/s11831-021-09652-0.
- Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024.
- Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multidirectional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
- Hadji, L., Amoozgar, M. and Tounsi, A. (2022), "Nonlinear thermal buckling of FG plates with porosity", Steel Compos. Struct., 43(5), 711-722. https://doi.org/10.12989/scs.2022.42.5.711.
- Hosseini, S.A.H., Moghaddam, M.H.N. and Rahmani, O. (2020), "Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam", Adv. Aircr. Spacecraft Sci., 7(6), 517-536. https://doi.org/10.12989/aas.2020.7.6.517.
- Huang, W. and Tahouneh, V. (2021), "Frequency study of porous FGPM beam on two-parameter elastic foundations via Timoshenko theory", Steel Compos. Struct., 40(1), 139-156. https://doi.org/10.12989/scs.2021.40.1.139.
- Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Koizumi, M. and Niino, M. (1995), "Overview of FGM Research in Japan", MRS Bull., 20(1), 19-21. https://doi.org/10.1557/S0883769400048867.
- Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Tounsi A. and Hussain M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel Compos. Struct., 41(2), 167-191. https://doi.org/10.12989/scs.2021.41.2.167.
- Koutoati, K., Mohri, F. and Daya, E.M. (2021), "Finite element approach of axial bending coupling on static and vibration behaviors of functionally graded material sandwich beams", Mech. Adv. Mater. Struct., 28(15), 1537-1553. https://doi.org/10.1080/15376494.2019.1685144.
- Li, D. (2020), "Layerwise theories of laminated composite structures and their applications: a review", Arch. Comput. Meth. Eng., 28, 577-600. https://doi.org/10.1007/s11831-019-09392-2.
- Ma, X., Sahmani, S. and Safaei, B. (2021), "Quasi-3D large deflection nonlinear analysis of isogeometric FGM microplates with variable thickness via nonlocal stress-strain gradient elasticity", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01390-y.
- Madenci, E. (2021a), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
- Madenci, E. (2021b), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157.
- Madenci, E. and Ozkili, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
- Majumdar, A. and Das, D. (2018), "A study on thermal buckling load of clamped functionally graded beams under linear and nonlinear thermal gradient across thickness", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 232(9), 769-784. https://doi.org/10.1177/1464420716649213.
- Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006.
- Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.
- Pandey, S. and Pradyumna, S. (2018a), "Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock", J. Therm. Stress., 41, 543-567. https://doi.org/10.1080/01495739.2017.1422999.
- Pandey, S. and Pradyumna, S. (2018b), "Analysis of functionally graded sandwich plates using a higher-order layerwise theory", Compos. Part B, 153, 325-336. https://doi.org/10.1016/j.compositesb.2018.08.121.
- Polat, A. (2021), "Examination of contact problem between functionally graded punch and functionally graded layer resting on elastic plane", Struct. Eng. Mech., 78(2), 135-143. https://doi.org/10.12989/sem.2021.78.2.135.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- Rezaiee-Pajand, M., Rajabzadeh-Safaei, N. and Masoodi, A.R. (2020), "An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams", Struct., 28, 1035-1049. https://doi.org/10.1016/j.istruc.2020.08.038.
- Sahoo, B., Mehar, K., Sahoo, B., Sharma, N. and Panda, S.K. (2021), "Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01514-4.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "Modeling and analysis of functionally graded sandwich beams: a review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
- Shi, G. (2007), "A new simple third-order shear deformation theory of plates", Int. J. Solid. Struct., 44(13), 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031.
- Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res., 10(1), 25-42. https://doi.org/10.12989/ANR.2021.10.1.025.
- Tahir, S.I., Tounsi, A., Chikh, A. Al-Osta1, M.A. Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel Compos. Struct., 42(4), 501-511. https://doi.org/10.12989/scs.2022.42.4.501.
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech.-A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
- Tran, T.T., Nguyen, N.H., Do, T.V., Minh, P.V. and Duc, N.D. (2021), "Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory" J. Sandw. Struct. Mater., 23(3), 906-930. https://doi.org/10.1177/1099636219849268.
- Wang, H., Zandi, Y., Gholizadeh, M. and Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional FG nanotube using numerical method", Adv. Nano Res., 10(5), 493-507. https://doi.org/10.12989/anr.2021.10.5.493.
- Wattanasakulpong, N., Prusty, G.B. and Kelly, D.W. (2011), "Thermal buckling and elastic vibration of thirdorder shear deformable functionally graded beams", Int. J. Mech. Sci., 53(9), 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005.
- Wattanasakulpong, N., Prusty, G.B. and Kelly, D.W. (2013), "Free and forced vibration analysis using improved third-order shear deformation theory for functionally graded plates under high temperature loading", J. Sandw. Struct. Mater., 15(5), 583-606. https://doi.org/10.1177/1099636213495751.
- Wu, C.-P. and Li, E. (2021), "A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells", Steel Compos. Struct., 39(3), 291-306. https://doi.org/10.12989/scs.2021.39.3.291.
- Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Zhao, J. and Yu, Z. (2021), "On the modeling and simulation of the nonlinear dynamic response of NEMS via a couple of nonlocal strain gradient theory and classical beam theory", Adv. Nano Res., 11(5), 547-563. https://doi.org/10.12989/anr.2021.11.5.547.