DOI QR코드

DOI QR Code

Environmental test campaign of a 6U CubeSat Test Platform equipped with an ambipolar plasma thruster

  • Received : 2022.02.17
  • Accepted : 2022.04.21
  • Published : 2022.05.25

Abstract

The increasing interest in CubeSat platforms ant their capability of enlarging the frontier of possible missions impose technology improvements. Miniaturized electrical propulsion (EP) systems enable new mission for multi-unit CubeSats (6U+). While electric propulsion systems have achieved important level of knowledge at equipment level, the investigation of the mutual impact between EP system and CubeSat technology at system level can provide a decisive improvement for both the technologies. The interaction between CubeSat and EP system should be assessed in terms of electromagnetic emissions (both radiated and conducted), thermal gradients, high electrical power management, surface chemical deposition, and quick and reliable data exchanges. This paper shows how a versatile CubeSat Test Platform (CTP), together with standardized procedures and specialized facilities enable the acquisition fundamental and unprecedented information. Measurements can be taken both by specific ground support equipment placed inside the vacuum facility and by dedicated sensors and subsystems installed on the CTP, providing a completely new set of data never obtained before. CTP is constituted of a 6U primary structure hosting the EP system, representative CubeSat avionics and batteries. For the first test campaign, CTP hosts the ambipolar plasma propulsion system, called Regulus and developed by T4I. After the integration and the functional test in laboratory environment, CTP + Regulus performed a Test campaign in relevant environment in the vacuum chamber at CISAS, University of Padua. This paper is focused on the test campaign description and the main results achieved at different power levels for different duration of the firings.

Keywords

References

  1. Aleina, S.C., Ferretto, D., Stesina, F. and Viola, N. (2016), "A model-based approach to the preliminary design of a space tug aimed at early requirement's verification", Proceedings of the International Astronautical Congress, IAC, Guadalajara, September.
  2. Bertolucci, G., Barato, F., Toson, E. and Pavarin, D. (2020), "Impact of propulsion system characteristics on the potential for cost reduction of earth observation missions at very low altitudes", Acta Astronautica, 176, 173-191. https://doi.org/10.1016/j.actaastro.2020.06.018.
  3. Busso, A., Mascarello, M., Corpino, S., Stesina, F. and Mozzillo, R. (2016), "The communication module onboard E-ST@R-II cubesat", Proceedings of 7th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications, TTC, ESTEC, Noordwijk, The Netherlands; September.
  4. Ciaralli, S., Coletti, M. and Gabriel, S.B. (2016), "Results of the qualification test campaign of a Pulsed Plasma Thruster for Cubesat Propulsion (PPTCUP)", Acta Astronautica, 121, 314-322. https://doi.org/10.1016/j.actaastro.2015.08.016.
  5. Conversano, R. and Wirz, R. (2011), "CubeSat lunar mission using a miniature ion thruster", 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, California, July. https://doi.org/10.2514/6.2011-6083.
  6. Corpino, S. and Stesina, F. (2020), "Inspection of the cis-lunar station using multi-purpose autonomous Cubesats", Acta Astronautica, 175, 591-605. https://doi.org/10.1016/j.actaastro.2020.05.053.
  7. Corpino, S., Stesina, F., Calvi, D. and Guerra, L. (2020), "Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle", Adv. Aircraft Spacecraft Sci., 7(3), 271-290, https://doi.org/10.12989/aas.2020.7.3.271.
  8. Corpino, S., Stesina, F., Saccoccia, G. and Calvi, D. (2019), "Design of a CubeSat test platform for the verification of small electric propulsion systems", Adv. Aircraft Spacecraft Sci., 6(5), 427-442. https://doi.org/10.12989/aas.2019.6.5.427.
  9. Correyero, S., Jarrige, J., Packan, D. and Ahedo, E. (2019), "Plasma beam characterization along the magnetic nozzle of an ECR thruster", Plasma Sour. Sci. Technol., 28(9), 095004. https://doi.org/10.1088/1361-6595/ab38e1.
  10. Curzi, G., Modenini, D. and Tortora, P. (2020), "Large constellations of small satellites: A survey of near future challenges and missions", Aerospace., 7(9), 133. http://doi.org/10.3390/AEROSPACE7090133.
  11. Edlerman, E. and Kronhaus, I. (2017), "Analysis of nanosatellite formation establishment and maintenance using electric propulsion", J. Spacecraft Rocket., 54(3), 731-742. https://doi.org/10.2514/1.A33632.
  12. Gorret, B., Metrailler, L., Pirat, C., Voillat, R., Frei, T., Collaud, X., ... & Lauria, M. (2016), "Developing a reliable capture system for cleanspace one", Proceedings of the International Astronautical Congress, Guadalajara, September.
  13. Habl, L., Rafalskyi, D. and Lafleur, T. (2020), "Ion beam diagnostic for the assessment of miniaturized electric propulsion systems", Rev. Scientif. Instrum., 91(9), 093501. https://doi.org/10.1063/5.0010589.
  14. Hakima, H. and Emami, M.R. (2020), "Deorbiter cubesat system engineering", J. Astronaut. Sci, 67, 1600-1635. https://doi.org/10.1007/s40295-020-00220-5.
  15. James, K., Moser, T., Conley, A., Slostad, J. and Hoyt, R. (2015), "Performance characterization of the hydros water electrolysis thruster", Proceedings of Small Satellites Conference, Logan, Utah, August.
  16. King, J.T., Kolbeck, J., Kang, J.S., Sanders, M. and Keidar, M. (2020), "Performance analysis of nano-sat scale µCAT electric propulsion for 3U CubeSat attitude control", Acta Astronautica, 178, 722-732. https://doi.org/10.1016/j.actaastro.2020.10.006.
  17. Krejci, D. and Lozano, P. (2018), "Space propulsion technology for small spacecraft", Proc. IEEE, 106(3), 362-378. https://doi.org/10.1109/JPROC.2017.2778747.
  18. Krejci, D., Jenkins, M.G. and Lozano, P. (2019), "Staging of electric propulsion systems: Enabling an interplanetary Cubesat", Acta Astronautica, 160, 175-182. https://doi.org/10.1016/j.actaastro.2019.04.031.
  19. Krejci, D., Seifert, B. and Scharlemann, C. (2013), "Endurance testing of a pulsed plasma thruster for nanosatellites", Acta Astronautica, 91, 187-193. https://doi.org/10.1016/j.actaastro.2013.06.012.
  20. Lemmer, K. (2018), "Propulsion for CubeSats", Acta Astronautica, 134, 231-243. https://doi.org/10.1016/j.actaastro.2017.01.048.
  21. Levchenko, I., Bazaka, K., Ding, Y., Raitses, Y., Mazouffre, S., Henning, T., ... & Xu, S. (2018), "Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers", Appl. Phys. Rev., 5(1), 011104. https://doi.org/10.1063/1.5007734.
  22. Lightsey, E.G., Stevenson, T. and Sorgenfrei, M. (2018), "Development and testing of a 3-D-printed cold gas thruster for an interplanetary cubesat", Proc. IEEE, 106(3), 379-390. https://doi.org/10.1109/JPROC.2018.2799898.
  23. Lim, J.W., Levchenko, I., Rohaizat, M.W., Huang, S., Xu, L., Sun, Y.F., ... & Xu, S. (2016), "Optimization, test and diagnostics of miniaturized hall thrusters", J. Vis. Exp., 144(2), e58466. https://doi.org/10.3791/58466.
  24. Lim, J.W.M., Huang, S.Y., Xu, L., Yee, J.S., Sim, R.Z., Zhang, Z.L., ... & Xu, S. (2018), "Automated integrated robotic systems for diagnostics and test of electric and micropropulsion thrusters", IEEE Tran. Plasma Sci., 46(2), 345-353. https://doi.org/10.1109/TPS.2018.2795023.
  25. Manente, M., Trezzolani, F., Magarotto, M., Fantino, E., Selmo, A., Bellomo, N., ... & Pavarin, D. (2019), "REGULUS: A propulsion platform to boost small satellite missions", Acta Astronautica, 157, 241-249. https://doi.org/10.1016/j.actaastro.2018.12.022.
  26. Mazouffre, S., Hallouin, T., Inchingolo, M., Gurciullo, A., Lascombes, P. and Maria, J.L. (2019), "Characterization of miniature Hall thruster plume in the 50 - 200 W power range", Proceedings of 8th European Conference for Aeronautics and Space Science (EUCASS), Madrid, Spain, July.
  27. Miller, S., Walker, M.L.R., Agolli, J. and Dankanich, J. (2021), "Survey and performance evaluation of smallsatellite propulsion technologies", J. Spacecraft Rocket., 58(1), 222-231. https://doi.org/10.2514/1.A34774.
  28. Montag, C., Starlinger, V., Herdrich, G. and Schonherr, T. (2018), "A high precision impulse bit pendulum for a hardware-in-the-loop testbed to characterize the pulsed plasma thruster PETRUS 2.0", Proceedings of 7th Russian-German Conference on Electric Propulsion, Germany, October.
  29. Nichele, F., Villa, M. and Vanotti, M. (2018), "Proximity operations-autonomous space drones", Proceedings of the 4S Symposium, Sorrento, June.
  30. O'Reilly, D., Herdrich, G. and Kavanagh, D.F. (2021), "Electric propulsion methods for small satellites: A review", Aerospace, 8(1), 22. https://doi.org/10.3390/aerospace8010022.
  31. Pallichadath, V., Radu, S., de Athayde Costa e Silva, S., Guerrieri, M. and Cervone, D. (2018). "Integration and miniaturization challenges in the design of micro-propulsion systems for picosatellite platforms", Proceeding of 3AF, ESA and CNES, Space Propulsion, Sivilla, Spain, May.
  32. Potrivitu, G.C., Sun, Y., Rohaizat, M.W.A.B., Cherkun, O., Xu, L., Huang, S. and Xu, S. (2020), "A Review of Low-Power Electric Propulsion Research at the Space Propulsion Centre Singapore", Aerospace, 7(6), 67. https://doi.org/10.3390/aerospace7060067.
  33. Reissner, A., Buldrini, N., Seifert, B., Horbe, T., Plesescu, F., Gonzalez Del Amo, J. and Massotti, L. (2016), "10000 h lifetime testing of mn feep thruster", 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, Utah, August.
  34. Schoolcraft, J., Klesh, A. and Werne, T. (2017), "MarCO: Interplanetary mission development on a CubeSat scale", Space Operations: Contributions from the Global Community, Springer, Cham.
  35. Stesina, F. (2019), "Validation of a test platform to qualify miniaturized electric propulsion systems", Aerospace, 6(9), 99. https://doi.org/10.3390/aerospace6090099.
  36. Stesina, F., Corpino, S. and Calvi, D. (2020), "A test platform to assess the impact of miniaturized propulsion systems", Aerospace, 7(11), 163. https://doi.org/10.3390/aerospace7110163.
  37. Stesina, F., Corpino, S., Calvi, D., Pavarin, D., Trezzolani, F., Bellomo, N., ... & Gonzalez Del Amo, J. (2020), "Test campaign of a Cubesat equipped with a helicon plasma thruster", International Astronautical Federation, 71st International Astronautical Congress, Dubai, October.
  38. Tailored ECSS Engineering Standards for In-Orbit Demonstration CubeSat Projects (2016).
  39. Trezzolani, F., Magarotto, M., Manente, M. and Pavarin, D. (2018), "Development of a counterbalanced pendulum thrust stand for electric propulsion", Measure., 122, 494-501. https://doi.org/10.1016/j.measurement.2018.02.011.
  40. Tsay, M., Model, J., Barcroft, C., Frongillo, J., Zwahlen, J. and Feng, C. (2017), "Integrated testing of iodine BIT-3 RF ion propulsion system for 6U CubeSat applications", Proceedings of 35th International Electric Propulsion Conference, Georgia Institute of Technology, USA, October.
  41. Tummala, A. and Dutta, A. (2019), "An overview of cube-satellite propulsion technologies and trends", Aerospace, 4(4), 58-67. https://doi.org/10.3390/aerospace4040058.
  42. VanWoerkom, M., Gorokhovsky, V., Pulido, G., Seidcheck, A., Williams, J. and Farnell, C. (2019), "Test results of ExoTerra's halo micro electric propulsion system for microsatellites", Proceedings of AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, August.
  43. Walker, R., Koschny, D. and Bramanti, C. (2017), "Miniaturised asteroid remote geophysical observer (MARGO): A stand-alone deep space CubeSat system for low-cost science and exploration missions", 6th Interplanetary CubeSat Workshop, Cambridge, UK, May.
  44. Zaberchik, M., Lev, D.R., Edlerman, E. and Kaidar, A. (2019). "Fabrication and testing of the cold gas propulsion system flight unit for the Adelis-SAMSON nano-satellites", Aerospace, 6(8), 91. https://doi.org/10.3390/aerospace6080091.