DOI QR코드

DOI QR Code

Current Status and Prospect of Seaweed-based Biofuels as Renewable Energy Resource

재생가능 에너지원으로서의 해조류 유래 바이오 연료의 현황과 전망

  • Liu, Jay (Department of Chemical Engineering, Pukyong National University)
  • 유준 (부경대학교 화학공학과)
  • Received : 2022.04.14
  • Accepted : 2022.04.29
  • Published : 2022.06.30

Abstract

Research and development of biofuels as one of the means to mitigate global warming and to avoid fossil fuel depletion has occurred for more than 30 years. However, there has only been limited distribution of a few first- and second-generation biofuels, and widespread supply and consumption of biofuels is still far from a reality. Although a relatively recently studied third-generation biofuel derived from seaweed biomass has been shown to have many advantages, it is yet to be deployed in commercial-scale seaweed biorefineries. This review paper examines the advantages and disadvantages of seaweed biorefineries for the entire value chain covering from seaweed and its cultivation to biofuel production based on an extensive literature search and the author's experience of conducting feasibility studies pertaining to seaweed biorefineries for over 10 years. For this purpose, the literature survey will cover the current status of seaweed production and its research and development worldwide, conversion technologies for biofuel production from seaweed based on bench-scale experiments, and large-scale techno-economic feasibility studies for seaweed conversion to biofuels and bioenergy. In addition, the main problems expected with the commercialization of seaweed-based biofuels will be identified. Finally, the current status of seaweed biorefinery technology and the author's views on its promising future will be summarized.

지구 온난화를 완화시키고 석유고갈 문제를 피할 수 있는 수단의 하나로서 바이오 연료에 대한 많은 연구 개발이 지금까지 30년 넘게 이루어졌다. 하지만 일부 1세대 및 2세대 바이오 연료의 제한적인 보급이 이루어졌을 뿐, 광범위한 바이오 연료의 보급은 아직도 요원하다. 비교적 최근에 연구가 시작된 해조류 바이오매스 유래 3세대 바이오는 경우 많은 장점을 가지고 있음에도 불구하고 상업 규모의 해조류 바이오 리파이너리의 보급은 아직도 멀기만 하다. 이 총설에서는 광범위한 문헌조사와 10년 넘게 해조류 바이오 리파이너리의 타당성 연구를 수행한 저자의 경험을 토대로 해조류와 해조류의 양식부터 최종 제품인 바이오 연료 생산까지 가치사슬 전반에 걸쳐 해조류 바이오 리파이너리가 가진 장점과 단점을 살펴보고자 한다. 이 관점에서 문헌조사는 (1) 전 세계 해조류 생산 및 연구 개발 현황, (2) 실험실 규모 실험에 기초한 해조류로부터 바이오 연료 생산을 위한 전환 기술, 그리고 (3) 대규모 해조류 바이오 리파이너리 타당성 연구를 포함할 것이다. 그리고 해조류 바이오 연료 상업화에 예상되는 주요 문제점을 확인하고 마지막으로 현재의 해조류 바이오 리파이너리 기술 현황과 유망한 미래 전망에 대한 저자의 견해가 정리될 것이다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의 학술연구비(2021년)에 의해 연구되었음.

References

  1. Giampietro, M., and Mayumi, K., The Biofuel Delusion: The Fallacy of Large Scale Agro-Biofuels Production, Routledge (2009).
  2. Reith, E. H., Deurwaarder, E. P., Hemmes, K., Curvers, A. P. W. M., Kamermans, P., Brandenburg, W. A., and Lettings, G., "BIO-OFFSHORE: Grootschalige teelt can zeewieren in combinatie met offshore windparken in de Nordzee," Energy Commission of the Netherlands (ECN), Scientific report ECNC-05-008 (2005).
  3. Roesijadi, G., Copping, A. E., Huesemann, M. H., Forster, J., and Benemann J. R., "Technoeconomic feasibility analysis of offshore seaweed farming for bioenergy and biobased products," Battelle Pacific Northwest Division Report, IR Number PNWD-3931 (2008).
  4. Fasahati, P., Woo, H. C., and Liu, J. J., "Industrial-scale bioethanol production from brown algae: effects of pretreatment processes on plant economics," Appl. Energy, 139, 175-187 (2015). https://doi.org/10.1016/j.apenergy.2014.11.032
  5. Adams, J. M. M., Ross, A. B., Anastasakis, K., Hodgson, E. M., Gallagher, J. A., Jones, J. M., and Donnison, I. S., "Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion," Bioresour. Technol., 102, 226-234 (2011). https://doi.org/10.1016/j.biortech.2010.06.152
  6. Roesijadi, G., Jones S. B., Snowden-Swan, L. J., and Zhu, Y., "Macroalgae as a Biomass Feedstock: A Preliminary Analysis," United States: N. p. (2010).
  7. Pomin, V. H., Seaweed: Ecology, Nutrient Composition and Medicinal Uses, Nova Science (2011).
  8. Song, M., Pham, H. D., Seon, J., and Woo, H. W., "Marine brown algae: A conundrum answer for sustainable biofuels production," Renew. Sust. Energ. Rev., 50, 782-792 (2015). https://doi.org/10.1016/j.rser.2015.05.021
  9. McHugh, D. J., "A guide to the seaweed industry," FAO FISHERIES TECHNICAL PAPER 441, Food and Agriculture Organization of the United Nations (FAO) (2003).
  10. Huesemann, M., Roesjadi, G., Benemann, J., and Metting, F. B., "Biofuels from microalgae and seaweeds" in Vertes, A. A., Qureshi, N., Blaschek, H. P., and Yukawa, H., Eds., Biomass to Biofuels: Strategies for Global Industries, John Wiley and Sons, 165-184 (2010).
  11. FAO, 2018, "The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals," Rome (2018).
  12. "A Study on the Industrialization of Advanced Aquaculture Technology", Korea Maritime Institute, Project Report, (2015).
  13. "Macroalgae Analysis: A National GIS-based Analysis of Macroalgae Production Potential Summary Report and Project Plan," Pacific Northwest National Laboratory, PNNL-21087 (2011).
  14. Woo, H. C., "Establishment of integrated process of macroalgal biomass," Project Final Report (20140559), Seoul, Korea (2018).
  15. Woo, H. C. "Establishment of the Basis for Bioenergy Production and Integrated Utilization of Aquatic Biomass," Project Final Report (20131039449-00), Seoul, Korea (2014).
  16. www.enalgae.eu/ (EnAlgae, n.d.)
  17. http://www.biomara.org/ (BioMara, n.d.)
  18. http://www.netalgae.eu. (Netalgae, n.d.)
  19. www.seagas.co.uk/ (SeaGas, n.d.)
  20. www.macrofuels.eu/ (MacroFuel, n.d.)
  21. www.mab3.dk (MacroAlgaeBiorefinery, n.d.)
  22. Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., and Olabi, A. G., "Pre-treatment techniques used for anaerobic digestion of algae," Fuel Process. Technol., 138, 765-779 (2015). https://doi.org/10.1016/j.fuproc.2015.06.027
  23. Miura, T., Kita, A., Okamura, Y., Aki, T., Matsumura, Y., Tajima, T., Kato, J., and Nakashimada, Y., "Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity," Bioresour. Technol., 169, 362-366 (2014). https://doi.org/10.1016/j.biortech.2014.07.013
  24. Fasahati, P., Saffron, C. M., Woo, H. C., and Liu, J. J., "Potential of brown algae for sustainable electricity production through anaerobic digestion," Energ. Convers. Manage., 135, 297-307 (2017). https://doi.org/10.1016/j.enconman.2016.12.084
  25. Hanssen, J.F., Indergaard, M., Ostgaard, K., Baevre, O.A., Pedersen, T.A., and Jensen, A., "Anaerobic digestion of Laminaria spp. and Ascophyllum nodosum and application of end products," Biomass, 14, 1-13 (1987). https://doi.org/10.1016/0144-4565(87)90019-9
  26. Tedesco, S., Benyounis, K.Y., and Olabi, A. G., "Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland," Energy, 61, 27-33 (2013). https://doi.org/10.1016/j.energy.2013.01.071
  27. Miura, T., Kita, A., Okamura, Y., Aki, T., Matsumura, Y., Tajima, T., Kato, J., and Nakashimada, Y., "Improved methane production from brown algae under high salinity by fed-batch acclimation," Bioresour. Technol., 187, 275-281 (2015). https://doi.org/10.1016/j.biortech.2015.03.142
  28. Wu, B., "Integration of mixing, heat transfer, and biochemical reaction kinetics in anaerobic methane fermentation," Biotechnol. Bioeng., 109(11), 2864-2874 (2012). https://doi.org/10.1002/bit.24551
  29. Chynoweth, D. P., Turick, C. E., Owens, J. M., Jerger, D. E., and Peck, M. W., "Biochemical methane potential of biomass and waste feedstocks," Biomass Bioenerg., 5, 95-111 (1993). https://doi.org/10.1016/0961-9534(93)90010-2
  30. Troiano, R. A., Wise, D. L., Augenstein, D. C., Kispert, R. G., and Cooney, C. L., "Fuel gas production by anaerobic digestion of kelp," Resour. Recov. Conserv., 2, 171-176 (1976). https://doi.org/10.1016/0304-3967(76)90007-x
  31. Pham, T. N., Nam, W. J., Jeon, Y. J., and Yoon, H. H., "Volatile fatty acids production from marine macroalgae by anaerobic fermentation," Bioresour. Technol., 124, 500-503 (2012). https://doi.org/10.1016/j.biortech.2012.08.081
  32. Fasahati, P. and Liu, J. J., "Impact of volatile fatty acid recovery on economics of ethanol production from brown algae via mixed alcohol synthesis," Chem. Eng. Res. Des., 98, 107-122 (2015). https://doi.org/10.1016/j.cherd.2015.04.013
  33. Fasahati, P., and Liu, J. J., "Economic, energy, and environmental impacts of alcohol dehydration technology on biofuel production from brown algae," Energy, 93, 2321-2336 (2015). https://doi.org/10.1016/j.energy.2015.10.123
  34. Dickson, R, Brigljevic, B., Lim, H., and Liu, J., "Maximizing the sustainability of a macroalgae biorefinery: A superstructure optimization of a volatile fatty acid platform," Green Chem, 22, 4174-4186 (2020). https://doi.org/10.1039/d0gc00430h
  35. Wargacki, A. J., Leonard, E., Win, M. N., Regitsky, D. D., Santos, C. N. S., Kim, P. B., Cooper, S. R., Raisner, R. M., Herman, A., Sivitz, A. B., Lakshmanaswamy, A., Kashiyama, Y., Baker, D., and Yoshikuni, Y., "An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae," Science, 335, 308-313 (2012) https://doi.org/10.1126/science.1214547
  36. Ge, L., Wang, P., and Mou, H., "Study on saccharification techniques of seaweed wastes for the transformation of ethanol," Renew. Energ., 36, 84-89 (2011). https://doi.org/10.1016/j.renene.2010.06.001
  37. Yanagisawa, M., Nakamura, K., Ariga, O., and Nakasaki, K., "Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides," Process Biochem., 46, 2111-2116 (2011). https://doi.org/10.1016/j.procbio.2011.08.001
  38. Lee, S. M. and Lee, J. H., "The isolation and characterization of simultaneous saccharification and fermentation microorganisms for Laminaria japonica utilization," Bioresour. Technol., 102, 5962-5967 (2011). https://doi.org/10.1016/j.biortech.2011.02.006
  39. Takeda, H., Yoneyama, F., Kawai, S., Hashimoto, W., and Murata, K., "Bioethanol production from marine biomass alginate by metabolically engineered bacteria," Energ. Environ. Sci., 4, 2575-2581 (2011). https://doi.org/10.1039/c1ee01236c
  40. Dickson, R., Ryu, J-H., and Liu, J. J., "Optimal plant design for integrated biorefinery producing bioethanol and protein from Saccharina japonica: A superstructure-based approach," Energy, 164, 1257-1270 (2018). https://doi.org/10.1016/j.energy.2018.09.007
  41. Dickson, R. and Liu, J. J., "A strategy for advanced biofuel production and emission utilization from macroalgal biorefinery using superstructure optimization," Energy, 221 119883 (2021). https://doi.org/10.1016/j.energy.2021.119883
  42. Schumacher, M., J. Yanik, A. Sinag, A. Kruse, "Hydrothermal conversion of seaweeds in a batch autoclave,", J. Supercrit. Fluid., 58, 131-135 (2011). https://doi.org/10.1016/j.supflu.2011.04.009
  43. Cherad, R., Onwudili, J. A., Ekpo, U., Williams, P. T., Lea-Langton, A. R., Carmargo-Valero, M., and Ross, A. B., "Macroalgae supercritical water gasification combined with nutrient recycling for microalgae cultivation," Environ. Prog. Sustain., 32, 902-909 (2013). https://doi.org/10.1002/ep.11814
  44. Okoli, C. O., Adams, T. A., Brigljevic, B., and Liu, J. J., "Design and economic analysis of a macroalgae-to-butanol process via a thermochemical route," Energ. Convers. Manag., 123, 410-422 (2016). https://doi.org/10.1016/j.enconman.2016.06.054
  45. Brigljevic, B., "Process Design, Modeling, and Assessment of Thermochemical and Hybrid Seaweed Bio-refineries," Ph.D. Thesis, Department of Chemical Engineering, Pukyong National University, Korea, (2019)
  46. Kim, S. S., Ly, H. V., Choi, G. H., Kim, J., and Woo, H. C., "Pyrolysis characteristics and kinetics of the alga Saccharina japonica," Bioresour. Technol., 123, 445-451 (2012). https://doi.org/10.1016/j.biortech.2012.07.097
  47. Choi, J. H., Kim, S. S., Suh, D. J., Jang, E. J., Min, K. I., and Woo, H. C., "Characterization of the bio-oil and bio-char produced by fixed bed pyrolysis of the brown alga Saccharina japonica." Korean J. Chem. Eng., 33(9), 2691-2698 (2016). https://doi.org/10.1007/s11814-016-0131-5
  48. Choi. J. H., Choi, J. W., Suh, D. J., Ha, J. M., Hwang, J. W., Jung, H. W., Lee, K. W., and Woo, H. C., "Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods," Energ. Convers. Manag., 86, 371-378 (2014). https://doi.org/10.1016/j.enconman.2014.04.094
  49. Choi, J. H., Kim, S. S., Ly, H. V., Kim. J., and Woo, H. C., "Effects of water-washing Saccharina japonica on fast pyrolysis in a bubbling fluidized-bed reactor," Biomass Bioenerg., 98, 112-123 (2017) https://doi.org/10.1016/j.biombioe.2017.01.006
  50. Brigljevic, B., Liu, J. J., and Lim, H., "Comprehensive feasibility assessment of a poly-generation process integrating fast pyrolysis of S. japonica and the Rankine cycle," Appl. Energ., 254, 113704 (2019). https://doi.org/10.1016/j.apenergy.2019.113704
  51. Brigljevic, B., Liu, J., and Lim, H., "Green energy from brown seaweed: Sustainable polygeneration industrial process via fast pyrolysis of S. Japonica combined with the Brayton cycle," Energ. Convers. Manag., 195, 1244-1254 (2019). https://doi.org/10.1016/j.enconman.2019.05.103
  52. Zhang, Y., "Hydrothermal liquefaction to convert biomass into crude oil," in Blaschek, H. P., Ezeji, T. C., and Scheffran, J., Eds., Biofuels from Agricultural Wastes and Byproducts, Blackwell Publishing, pp. 201-232 (2010)
  53. Neveux, N., Yuen, A. K. L., Jazrawi, C., Magnusson, M., Haynes, B. S., Masters, A. F, Montoya, A., Paula, N. A., Maschmeyer, T., and de Nysa, R., "Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae," Bioresour. Technol. 155, 334-341 (2014). https://doi.org/10.1016/j.biortech.2013.12.083
  54. Raikova, S., Le, C. D., Beacham, T. A., Jenkins, R. W., Allen, M. J., and Chuck, C. J., "Towards a marine biorefinery through the hydrothermal liquefaction of macroalgae native to the United Kingdom," Biomass Bioenerg., 107, 244-253 (2017). https://doi.org/10.1016/j.biombioe.2017.10.010
  55. Niaz, H., Brigljevic, B., Park, Y. B., Woo, H. C., and Liu, J. J., "Comprehensive Feasibility Assessment of Combined Heat, Hydrogen, and Power Production via Hydrothermal Liquefaction of Saccharina japonica," ACS Sustain. Chem. Eng., 8, 8305-8317 (2020). https://doi.org/10.1021/acssuschemeng.0c01951
  56. Niaz, H., MS Thesis, Department of Chemical Engineering, Pukyong National University, Korea (2019).
  57. Greene J. M., Gulden, J., Wood, G., Huesemann, M., and Quinn J. C., "Techno-economic analysis and global warming potential of a novel offshore macroalgae biorefinery," Algal Res., 51, 102032 (2020). https://doi.org/10.1016/j.algal.2020.102032