DOI QR코드

DOI QR Code

Chemical Composition of Cactus Pear Seed Oil: phenolics identification and antioxidant activity

  • Ali, Berraaouan (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences) ;
  • Abderrahim, Ziyyat (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences) ;
  • Hassane, Mekhfi (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences) ;
  • Marianne, Sindic (Laboratory of Agroalimentary Products Quality and Safety, Unit of Quality Analysis and Hazard, Gembloux Agro-Bio Tech, University of Liege) ;
  • Marie-Laure, Fauconnier (Laboratory of Volatolomics, Unit of General and Organic Chemistry, Gembloux Agro-Bio Tech, University of Liege) ;
  • Abdelkhaleq, Legssyer (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences) ;
  • Mohammed, Aziz (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences) ;
  • Mohamed, Bnouham (Laboratory of Bioressources, Biotechnologies, Ethnopharmacology and Health, Mohammed the First University, Faculty of Sciences)
  • 투고 : 2021.04.26
  • 심사 : 2022.04.18
  • 발행 : 2022.06.30

초록

Objectives: The chemical composition of cactus pear seed oil (Opuntia ficus-indica [L.] Mill.) was analyzed in terms of its fatty acid composition, tocopherol content, phenolic identification, and the oil's phenolic-rich fraction antioxidant power was determined. Methods: Fatty acid profiling was performed by gas chromatography coupled to an FI detector. Tocopherols and phenolic compounds were analyzed by LC-FLD/UV, and the oil's phenolic-rich fraction antioxidant power was determined by phosphomolybdenum, DPPH assay and β-carotene bleaching test. Results: Fatty acid composition was marked by a high unsaturation level (83.22 ± 0.34%). The predominant fatty acid was linoleic acid (66.79 ± 0.78%), followed by oleic acid (15.16 ± 0.42%) and palmitic acid (12.70 ± 0.03%). The main tocopherol was γ-tocopherol (172.59 ± 7.59 mg/kg. In addition, Tyrosol, vanillic acid, vanillin, ferulic acid, pinoresinol, and cinnamic acid were identified as phenolic compounds in the analyzed seed oil. Moreover, the oil's phenolics-rich fraction showed a significant total antioxidant activity, scavenged DPPH up to 97.85%, and effectively protected β-carotene against bleaching (97.56%). Conclusion: The results support the potential use of cactus pear seed oil as a functional food.

키워드

과제정보

Authors are thankful to Richard Gaeton for its meticulous care of HPLC machine.

참고문헌

  1. Sawaya WN, Khan P. Chemical characterization of prickly pear seed oil, Opuntia ficus-indica. J Food Sci. 1982;47(6):2060-1. https://doi.org/10.1111/j.1365-2621.1982.tb12946.x
  2. Ennouri M, Evelyne B, Laurence M, Hamadi A. Fatty acid composition and rheological behaviour of prickly pear seed oils. Food Chem. 2005;93(3):431-7. https://doi.org/10.1016/j.foodchem.2004.10.020
  3. Ramadan MF, Morsel JT. Oil cactus pear (Opuntia ficus-indica L.). Food Chem. 2003;82(3):339-45. https://doi.org/10.1016/S0308-8146(02)00550-2
  4. El Mannoubi I, Barrek S, Skanji T, Casabianca H, Zarrouk H. Characterization of Opuntia ficus indica seed oil from Tunisia. Chem Nat Compd. 2009;45(5):616-20. https://doi.org/10.1007/s10600-009-9448-1
  5. Tounsi MS, Ouerghemmi I, Ksouri R, Wannes WA, Hammrouni I, Marzouk B. HPLC-determination of phenolic composition and antioxidant capacity of cactus prickly pears seeds. Asian J Chem. 2011;23(3):1006-10.
  6. Chougui N, Tamendjari A, Hamidj W, Hallal S, Barras A, Richard T, et al. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 2013;139(1-4):796-803. https://doi.org/10.1016/j.foodchem.2013.01.054
  7. Nounah I, Chbani M, Matthaus B, Charrouf Z, Hajib A, Willenberg I. Profile of volatile aroma-active compounds of cactus seed oil (Opuntia ficus-indica) from different locations in Morocco and their fate during seed roasting. Foods. 2020;9(9):1280. https://doi.org/10.3390/foods9091280
  8. Moumen AB, Mansouri F, Richard G, Abid M, Fauconnier ML, Sindic M, et al. Biochemical characterisation of the seed oils of four safflower (Carthamus tinctorius) varieties grown in northeastern of Morocco. Int J Food Sci Technol. 2015;50(3):804-10. https://doi.org/10.1111/ijfs.12714
  9. Brenes M, Garcia A, Garcia P, Garrido A. Rapid and complete extraction of phenols from olive oil and determination by means of a coulometric electrode array system. J Agric Food Chem. 2000;48(11):5178-83. https://doi.org/10.1021/jf000686e
  10. Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using FolinCiocalteu reagent. Nat Protoc. 2007;2(4):875-7. https://doi.org/10.1038/nprot.2007.102
  11. Kumaran A, Joel Karunakaran R. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT. 2007;40(2):344-52. https://doi.org/10.1016/j.lwt.2005.09.011
  12. Liu W, Fu YJ, Zu YG, Tong MH, Wu N, Liu XL, et al. Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity. Food Chem. 2009;114(1):334-9. https://doi.org/10.1016/j.foodchem.2008.09.049
  13. Sahreen S, Khan MR, Khan RA. Evaluation of antioxidant activities of various solvent extracts of Carissa opaca fruits. Food Chem. 2010;122(4):1205-11. https://doi.org/10.1016/j.foodchem.2010.03.120
  14. Ramadan M, Morsel JT. Direct isocratic normal-phase HPLC assay of fat-soluble vitamins and β-carotene in oilseeds. Eur Food Res Technol. 2002;214(6):521-7. https://doi.org/10.1007/s00217-002-0511-4
  15. Labuschagne MT, Hugo A. Oil content and fatty acid composition of cactus pear seed compared with cotton and grape seed. J Food Biochem. 2010;34(1):93-100. https://doi.org/10.1111/j.1745-4514.2009.00266.x
  16. Coskuner Yn, Tekin A. Monitoring of seed composition of prickly pear (Opuntia ficus-indica L) fruits during maturation period. J Sci Food Agric. 2003;83(8):846-9. https://doi.org/10.1002/jsfa.1423
  17. Al-Khudairy L, Hartley L, Clar C, Flowers N, Hooper L, Rees K. Omega 6 fatty acids for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2015;(11):CD011094.
  18. Martins JLR, Silva DM, Gomes EH, Fava SA, Carvalho MF, Macedo IYL, et al. Evaluation of gastroprotective activity of linoleic acid on gastric ulcer in a mice model. Curr Pharm Des. 2022;28(8):655-60. https://doi.org/10.2174/1381612826666200908144053
  19. Sales-Campos H, Souza PR, Peghini BC, da Silva JS, Cardoso CR. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem. 2013;13(2):201-10. https://doi.org/10.2174/138955713804805193
  20. Matthaus B, Ozcan MM. Habitat effects on yield, fatty acid composition and tocopherol contents of prickly pear (Opuntia ficusindica L.) seed oils. Sci Hortic. 2011;131:95-8. https://doi.org/10.1016/j.scienta.2011.09.027
  21. Cao J, Li H, Xia X, Zou XG, Li J, Zhu XM, et al. Effect of fatty acid and tocopherol on oxidative stability of vegetable oils with limited air. Int J Food Prop. 2015;18(4):808-20. https://doi.org/10.1080/10942912.2013.864674
  22. Kamal-Eldin A, Andersson R. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J Am Oil Chem Soc. 1997;74(4):375-80. https://doi.org/10.1007/s11746-997-0093-1
  23. Pryor WA. TOCOPHEROLS/Physiology. In: Caballero B, editor. Encyclopedia of food sciences and nutrition. 2nd ed: Amsterdam: Academic Press; 2003. p. 5796-800.
  24. Jiang Q, Ames BN. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J. 2003;17(8):816-22. https://doi.org/10.1096/fj.02-0877com
  25. Tlili N, Bargougui A, Elfalleh W, Triki S, Nasri N. Phenolic compounds, protein, lipid content and fatty acids compositions of cactus seeds. J Med Plants Res. 2011;5(18):4519-24.
  26. Haig T. Allelochemicals in plants. In: Zeng R, Mallik A, Luo S, editors. Allelopathy in sustainable agriculture and forestry. New York (NY): Springer; 2008. p. 63-104.
  27. Inderjit. Plant phenolics in allelopathy. Bot Rev. 1996;62(2):186-202. https://doi.org/10.1007/BF02857921
  28. Dziedzic SZ, Hudson BJF. Phenolic acids and related compounds as antioxidants for edible oils. Food Chem. 1984;14(1):45-51. https://doi.org/10.1016/0308-8146(84)90017-7
  29. Wanasundara PKJPD, Shahidi F, Shukla VKS. Endogenous antioxidants from oilseeds and edible oils. Food Rev Int. 1997;13(2):225-92. https://doi.org/10.1080/87559129709541106
  30. Kamat JP, Ghosh A, Devasagayam TP. Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol Cell Biochem. 2000;209(1-2):47-53. https://doi.org/10.1023/A:1007048313556
  31. Lirdprapamongkol K, Sakurai H, Kawasaki N, Choo MK, Saitoh Y, Aozuka Y, et al. Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur J Pharm Sci. 2005;25(1):57-65. https://doi.org/10.1016/j.ejps.2005.01.015
  32. Lee J, Cho JY, Lee SY, Lee KW, Lee J, Song JY. Vanillin protects human keratinocyte stem cells against ultraviolet B irradiation. Food Chem Toxicol. 2014;63:30-7. https://doi.org/10.1016/j.fct.2013.10.031
  33. Bu Y, Rho S, Kim J, Kim MY, Lee DH, Kim SY, et al. Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neurosci Lett. 2007;414(3):218-21. https://doi.org/10.1016/j.neulet.2006.08.094
  34. Dewapriya P, Himaya SW, Li YX, Kim SK. Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson's disease. Food Chem. 2013;141(2):1147-57. https://doi.org/10.1016/j.foodchem.2013.04.004
  35. Ou S, Kwok KC. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric. 2004;84(11):1261-9. https://doi.org/10.1002/jsfa.1873
  36. Tai A, Sawano T, Ito H. Antioxidative properties of vanillic acid esters in multiple antioxidant assays. Biosci Biotechnol Biochem. 2012;76(2):314-8. https://doi.org/10.1271/bbb.110700
  37. Kumar S, Prahalathan P, Raja B. Vanillic acid: a potential inhibitor of cardiac and aortic wall remodeling in l-NAME induced hypertension through upregulation of endothelial nitric oxide synthase. Environ Toxicol Pharmacol. 2014;38(2):643-52. https://doi.org/10.1016/j.etap.2014.07.011
  38. Shen SC, Chang WC, Chen JW, Kuo PL, Wu JSB. Anti-hyperglycemic effect of vanillic acid in high-fat diet induced prediabetic rats. Ann Nutr Metab. 2013;63:1181.
  39. Akao Y, Maruyama H, Matsumoto K, Ohguchi K, Nishizawa K, Sakamoto T, et al. Cell growth inhibitory effect of cinnamic acid derivatives from propolis on human tumor cell lines. Biol Pharm Bull. 2003;26(7):1057-9. https://doi.org/10.1248/bpb.26.1057
  40. Cinkilic N, Tuzun E, Cetintas SK, Vatan O, Yilmaz D, Cavas T, et al. Radio-protective effect of cinnamic acid, a phenolic phytochemical, on genomic instability induced by X-rays in human blood lymphocytes in vitro. Mutat Res Genet Toxicol Environ Mutagen. 2014;770:72-9. https://doi.org/10.1016/j.mrgentox.2014.04.025
  41. Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K. Methods for testing antioxidant activity. Analyst. 2002;127(1):183-98. https://doi.org/10.1039/b009171p
  42. Koleva II, van Beek TA, Linssen JP, de Groot A, Evstatieva LN. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal. 2002;13(1):8-17. https://doi.org/10.1002/pca.611
  43. Grigelmo-Miguel N, Rojas-Grau MA, Soliva-Fortuny R, MartinBelloso O. Methods of analysis of antioxidant capacity of phytochemicals. In: de la Rosa LA, Alvarez-Parrilla E, Gonzalez-Aguilar GA, editors. Fruit and vegetable phytochemicals: chemistry and human health. 2nd ed. Chichester: Wiley-Blackwell; 2009. p. 271-307.
  44. Shahidi F, Wanasundara PK. Phenolic antioxidants. Crit Rev Food Sci Nutr. 1992;32(1):67-103. https://doi.org/10.1080/10408399209527581
  45. DelRio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818-92. https://doi.org/10.1089/ars.2012.4581
  46. Benayad Z, Martinez-Villaluenga C, Frias J, Gomez-Cordoves C, Es-Safi NE. Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficusindica flowers obtained by different extraction methods. Ind Crops Prod. 2014;62:412-20. https://doi.org/10.1016/j.indcrop.2014.08.046