DOI QR코드

DOI QR Code

A study on the brownish ring of quartz glass crucible for silicon single crystal ingot

실리콘 단결정 잉곳용 석영유리 도가니의 brownish ring에 대한 연구

  • Jung, YoonSung (Division of Materials Science and Engineering Hanyang University) ;
  • Choi, Jae Ho (Division of Materials Science and Engineering Hanyang University) ;
  • Min, Kyung Won (Division of Materials Science and Engineering Hanyang University) ;
  • Byun, Young Min (Division of Materials Science and Engineering Hanyang University) ;
  • Im, Won Bin (Division of Materials Science and Engineering Hanyang University) ;
  • Noh, Sung-Hun (SGC Energy Co., Ltd.) ;
  • Kang, Nam-Hun (SGC Energy Co., Ltd.) ;
  • Kim, Hyeong-Jun (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 정윤성 (한양대학교 신소재공학과) ;
  • 최재호 (한양대학교 신소재공학과) ;
  • 민경원 (한양대학교 신소재공학과) ;
  • 변영민 (한양대학교 신소재공학과) ;
  • 임원빈 (한양대학교 신소재공학과) ;
  • 노성훈 (SGC 에너지) ;
  • 강남훈 (SGC 에너지) ;
  • 김형준 (한국세라믹기술원 엔지니어링소재센터)
  • Received : 2022.06.02
  • Accepted : 2022.06.10
  • Published : 2022.06.30

Abstract

A brown ring (hereinafter referred to as BR) on the inner surface of a quartz glass crucible used in the manufacturing process of a silicon ingot for semiconductor wafers was studied. BR is 20~30 ㎛ in size and has an asymmetric brown ring shape. The size and distribution of BR were different depending on the crucible location, and the size and distribution of BR were the largest and most abundant in the round part with the highest crucible temperature during Si ingot growth. BR contains cristobalite, which has a higher coefficient of thermal expansion than quartz glass, so it is considered that surface cracks appear. The color development of BR and pin holes are presumed to be due to oxygen vacancies.

반도체 웨이퍼용 실리콘 잉곳 제조과정에서 사용되는 석영유리 도가니 내측표면의brownish ring (BR)에 대해 연구하였다. BR의 크기는 20~30 ㎛이고 비대칭 갈색 고리형태이다. 도가니 위치에 따라 BR의 크기와 분포가 상이하며, Si 잉곳 성장시 도가니 온도가 가장 높은 round 부가 가장 크고 많았다. BR은 석영유리보다 열팽창계수가 큰 cristobalite를 함유하고 있어 표면 crack이 나타나는 것으로 판단된다. BR의 발색 현상과 p in hole은 산소 결손에 의한 것으로 생각된다.

Keywords

Acknowledgement

이 연구는 산업통상자원부, 소재부품 기술개발사업에서 지원되었다(세부과제번호 20012959).

References

  1. S. Noh, N. Kang, H. Yun and H.-J. Kim, "Status of quartz glass crucible", Ceramist 22 (2019) 452. https://doi.org/10.31613/ceramist.2019.22.4.02
  2. R.L. Hansen, L.E. Drafall, R.M. McCutchan, J.D. Holder, L.A. Allen and R.D. Shelley, "Surface-treated crucibles for improved zero dislocation performance", U.S. Patent No 5,976 (1999) 247.
  3. H. Jebsen-Marwedel and R. Bruckner, "Glastechnische Fabrikationsfehler. "Pathologische" Ausnahmezustande des Werkstoffes Glas und ihre Behebung; eine Brucke zwischen Wissenschaft, Technologie und Praxis", Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 205.
  4. J. Friedrich, W. von Ammon and G. Muller, "Czochralski growth of silicon crystals", Handbook of Crystal Growth. Elsevier (2015) 45.
  5. K. Watanabe, K. Tanaka and M. Hasebe, "The ESR investigation of brownish ring at the surface of quartz crucible used for Cz-Si crystal growth", Chem. Lett. 25 (1996) 627. https://doi.org/10.1246/cl.1996.627
  6. K. Yamahara, X. Huang, S. Sakai, A. Utsunomiya, Y. Tsurita and K. Hoshikawa. "Surface of silica glass reacting with silicon melt: effect of raw materials for silica crucibles", Jpn. J. Appl. Phys. 40 (2001) 1178. https://doi.org/10.1143/JJAP.40.1178
  7. A. Ikari, S. Matsuo, K.T. Kazutaka Terashima and S.K. Shigeyuki Kimura, "In situ observation of etching processes of silica glasses by silicon melts", Jpn. J. Appl. Phys. 35 (1996) 3547 https://doi.org/10.1143/JJAP.35.3547
  8. H. Imai and H. Hirashima, "Evolution of cristobalite clusters on silica glass surfaces in molten silicon", J. Electrochem. Soc. 147 (2000) 1182. https://doi.org/10.1149/1.1393333
  9. Z. Liu and T. Carlberg, "Reactions between liquid silicon and vitreous silica", J. Mater. Res. 7 (1992) 352. https://doi.org/10.1557/JMR.1992.0352
  10. A. Hirsch, M. Schulze, F. Sturm, M. Trempa, C. Reimann and J. Friedrich, "Factors influencing the gas bubble evolution and the cristobalite formation in quartz glass Cz crucibles for Czochralski growth of silicon crystals", J. Cryst. Growth 570 (2021) 126231. https://doi.org/10.1016/j.jcrysgro.2021.126231
  11. H.J. Jeon, H. Park, G. Koyyada, S. Alhammadi and J.H. Jung, "Optimal cooling system design for increasing the crystal growth rate of single-crystal silicon ingots in the czochralski process using the crystal growth simulation", Processes 8 (2020) 1077. https://doi.org/10.3390/pr8091077
  12. J. Yu, L. Zhang, T. Shen, L. Zhang and Y.-H. Li, "Numerical simulation of thermal-solutal capillary-buoyancy flow of Ge1-xSix single crystals driven by surface-tension and rotation in a czochralski configuration", Crystals 9 (2019) 217. https://doi.org/10.3390/cryst9040217
  13. C. Wu, B. Yuan and Y. Li, "Flow instabilities of coupled rotation and thermal-solutal capillary convection of binary mixture in Czochralski configuration", Crystals 9 (2019) 72. https://doi.org/10.3390/cryst9020072
  14. S. Agnello, D. Di Francesca, A. Alessi, G. Iovino, M. Cannas, S. Girard, A. Boukenter and Y. Ouerdane, "Interstitial O2 distribution in amorphous SiO2 nanoparticles determined by Raman and photoluminescence spectroscopy", J. Appl. Phys. 114 (2013) 104305. https://doi.org/10.1063/1.4820940
  15. G.S. Henderson, D.R. Neuville, B. Cochain and L. Cormier, "The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study", J. Non. Cryst. Solids 335 (2009) 468.
  16. M. Heili, B. Poumellec, E. Burov, C. Gonnet, C.L. Losq, D.R. Neuville and M. Lancry, "The dependence of Raman defect bands in silica glasses on densification revisited", J. Mater. (2016) 1659.
  17. T. Deschaines, J. Hodkiewicz and P. Henson, "Characterization of amorphous and microcrystalline silicon using Raman spectroscopy", Advanstar Communications Inc. (2009).
  18. A.N. Trukhin, K. Smits, J. Jansons and A. Kuzmin, "Luminescence of polymorphous SiO2", Radiat Meas 90 (2016) 6. https://doi.org/10.1016/j.radmeas.2015.12.002
  19. F. Auento, "Stability, lattice parameters, and thermal expansion of β-cristobalite", Am. Min. 51 (1966) 1167.
  20. G. Wypych, "Handbook of Fillers", 4th ed. (Elsevier, Amsterdam, 2016) 107.
  21. I.P. Swalnson and M.T. Dove, "On the thermal expansion of β-cristobalite", Phys. Chem. Miner. 22 (1995) 61. https://doi.org/10.1007/BF00202681
  22. M.K. Kim, B.Y. Jang, J.S. Lee, J.S. Kim and S. Nahm, "Microstructures and electrochemical performances of nano-sized SiOx (1.18 ≤ x ≤ 1.83) as an anode material for a lithium (Li)-ion battery", J. Power Sources 244 (2013) 115. https://doi.org/10.1016/j.jpowsour.2013.03.041
  23. U Ekhult and T. Carlberg, "Oxygen solubility in liquid silicon in equilibrium with SiO and SiO2", J. Electrochem. Soc. 136 (1989) 551. https://doi.org/10.1149/1.2096680