DOI QR코드

DOI QR Code

Effect of Natural Product Extracts on Inhibition of Macrophage and Basophil

천연물 추출물이 대식세포 및 호염구 활성 억제에 미치는 영향

  • Park, Jaehyun (School of Medicine.Department of Medicine, Kangwon National University) ;
  • Jang, Jimin (School of Medicine.Department of Medicine, Kangwon National University) ;
  • Cha, Sang-Ryul (School of Medicine.Department of Medicine, Kangwon National University) ;
  • Baek, Hyosin (School of Medicine.Department of Medicine, Kangwon National University) ;
  • Lee, Jooyeon (School of Medicine.Department of Medicine, Kangwon National University) ;
  • Lee, You-Hui (Cureson Co., Ltd) ;
  • Ryu, Semin (School of Medicine.Department of Medicine, Kangwon National University) ;
  • Yang, Se-Ran (School of Medicine.Department of Medicine, Kangwon National University)
  • 박재현 (강원대학교 의학전문대학원.의학과) ;
  • 장지민 (강원대학교 의학전문대학원.의학과) ;
  • 차상률 (강원대학교 의학전문대학원.의학과) ;
  • 백효신 (강원대학교 의학전문대학원.의학과) ;
  • 이주연 (강원대학교 의학전문대학원.의학과) ;
  • 이유희 ((주)큐어슨) ;
  • 류세민 (강원대학교 의학전문대학원.의학과) ;
  • 양세란 (강원대학교 의학전문대학원.의학과)
  • Received : 2022.02.16
  • Accepted : 2022.05.20
  • Published : 2022.06.30

Abstract

Asthma is a chronic inflammatory disease characterized by recurring symptoms, airflow obstruction, and bronchial hyper-responsiveness. The onset of asthma for most patients begins early in life, and current asthma treatment with anti-inflammatory agents can have adverse effects, eventually leading to impaired quality of life. In the pathogenesis of asthma, macrophages and basophils play a vital role during progression. Macrophages not only induce inflammation by secreting inflammatory cytokines but also promote DNA damage and mucus production through nitric oxide (NO) production. Basophils enhance eosinophil recruitment and aggravate asthma through the FcεRIα receptor with high affinity for histamine and IgE. Therefore, in this study, we investigated whether the activation of macrophages and basophils is suppressed by the individual extracts of 28 natural products. RAW 264.7 cells (mouse macrophages) were treated with the natural products in LPS, and 4 natural product extracts resulted in decreased NO production. In β-hexosaminidase assay using RBL-2H3 cells (rat basophils), 19 natural product extracts decreased β-hexosaminidase production. In NO production and β-hexosaminidase assay using macrophages and basophils, 3 natural product extracts (Plantago asiatica, Centella asiatica, and Perilla frutescens var. japonica) significantly inhibited NO production and β-hexosaminidase release. Overall, we examined the inhibitory effects of 28 natural product extracts on macrophage and basophil activity, and the findings demonstrated the potential of natural product extracts for treating asthma and macrophage- and basophil-related diseases.

천식은 호흡곤란, 기침, 가슴통증과 같은 증상을 가지는 만성질환으로써 세포내 염증으로 인한 조직 리모델링을 특징으로 한다. 이러한 천식은 잘 조절되지 않을 시 치료제의 부작용을 경험할 수 있으며 일상 기능 및 삶의 질 저하로까지 이어질 수 있다. 천식은 여러 면역세포들에 의한 염증반응이 주원인으로 대식세포와 호염구 또한 천식에 악영향을 미칠 수 있다. 대식세포는 여러 염증성 사이토카인을 분비하여 염증을 유발할 뿐만 아니라 산화질소를 통한 DNA 손상과 점액 생성을 유도하여 천식을 악화시킬 수 있다. 호염구는 호산구 침윤을 증가시킬 수 있으며 히스타민 및 IgE에 대한 높은 친화력을 가진 FcεRIα 수용체로 인해 천식을 악화시킬 수 있다. 따라서 본 연구에서는 28여 가지의 천연물의 각 분획에서 추출한 추출물을 가지고 이러한 세포들의 반응을 억제할 수 있는지 실험하였다. 마우스 대식세포인 Raw 264.7 세포에서 LPS에 의한 산화질소 생성 억제력 및 레트 호염구세포인 RBL-2H3 세포에서 IgE 감작에 의한 β-hexosaminidase 생성 억제력을 평가하였다. 4가지 천연물 추출물이 산화질소를 유의적으로 감소시켰으며 19가지 천연물 추출물이 β-hexosaminidase 생성을 유의적으로 감소시켰다. 이 중 두 실험 모두 유의적인 결과를 보였던 천연물 추출물은 질경이(Plantago asiatica), 병풀(Centella asiatica), 들깨(Perilla frutescens var. japonica) 이렇게 3가지이었다. 본 연구는 여러 천연물 추출물이 천식에 관여하는 대식세포 및 호염구 활성 억제에 미치는 영향을 분석하였다. 천식뿐 아니라 대식세포 및 호염구가 관여하는 타 질환에도 적용할 수 있는 천연물 추출물에 대한 기초 연구를 제공한다.

Keywords

Acknowledgement

이 결과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No.2020R1A5A8019180).

References

  1. Mims, J.W., Asthma: definitions and pathophysiology. Int. Forum Allergy Rhinol., 5 Suppl 1, S2-6 (2015). https://doi.org/10.1002/alr.21609
  2. Papi, A., Brightling, C., Pedersen, S.E., Reddel, H.K., Asthma. Lancet., 391, 783-800 (2018). https://doi.org/10.1016/S0140-6736(17)33311-1
  3. Chung, K.F., Wenzel, S.E., Brozek, J.L., Bush, A., Castro, M., Sterk, P.J., Adcock, I.M., Bateman, E.D., Bel, E.H., Bleecker, E.R., Boulet, L.P., Brightling, C., Chanez, P., Dahlen, S.E., Djukanovic, R., Frey, U., Gaga, M., Gibson, P., Hamid, Q., Jajour, N.N., Mauad, T., Sorkness, R.L., Teague, W.G. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J., 43, 343-373 (2014). https://doi.org/10.1183/09031936.00202013
  4. Hyland, M.E., Whalley, B., Jones, R.C., Masoli, M., A qualitative study of the impact of severe asthma and its treatment showing that treatment burden is neglected in existing asthma assessment scales. Qual Life Res., 24, 631-639 (2015). https://doi.org/10.1007/s11136-014-0801-x
  5. Amaral-Machado, L., Oliveira, W.N., Moreira-Oliveira, S.S., Pereira, D.T., Alencar, E.N., Tsapis, N., Egito, E.S.T., Use of Natural Products in Asthma Treatment. Evid Based Complement Alternat Med., 2020, 1021258 (2020).
  6. Tan, R., Liew, M.F., Lim, H.F., Leung, B.P., Wong, W.S.F., Promises and challenges of biologics for severe asthma. Biochem. Pharmacol., 179, 114012 (2020). https://doi.org/10.1016/j.bcp.2020.114012
  7. van der Veen, T.A., de Groot, L.E.S., Melgert, B.N., The different faces of the macrophage in asthma. Curr. Opin. Pulm Med., 26, 62-68 (2020). https://doi.org/10.1097/MCP.0000000000000647
  8. Moreira, A.P., Cavassani, K.A., Hullinger, R., Rosada, R.S., Fong, D.J., Murray, L., Hesson, D.P., Hogaboam, C.M., Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. J. Allergy Clin. Immunol., 126, 712-721 e717 (2010). https://doi.org/10.1016/j.jaci.2010.06.010
  9. Naura, A.S., Zerfaoui, M., Kim, H., Abd Elmageed, Z.Y., Rodriguez, P.C., Hans, C.P., Ju, J., Errami, Y., Park, J., Ochoa, A.C., Boulares, A.H., Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but not inflammation. J. Immunol., 185, 3076-3085 (2010). https://doi.org/10.4049/jimmunol.0904214
  10. Siracusa, M.C., Kim, B.S., Spergel, J.M., Artis, D., Basophils and allergic inflammation. J. Allergy Clin. Immunol., 132, 789-801, quiz 788 (2013). https://doi.org/10.1016/j.jaci.2013.07.046
  11. Lambrecht, B.N., Persson, E.K. Hammad, H., Myeloid Cells in Asthma. Microbiol Spectr., 5, (2017).
  12. Brooks, C.R., van Dalen, C.J., Hermans, I.F., Gibson, P.G., Simpson, J.L., Douwes, J., Sputum basophils are increased in eosinophilic asthma compared with non-eosinophilic asthma phenotypes. Allergy, 72, 1583-1586 (2017). https://doi.org/10.1111/all.13185
  13. Lee, J., Park, J.R., Jang, A., Yang, S.R. The Anti-Proliferation and Oxidative Damage-Related Mechanism of L-Carnitine in Human Colorectal Cancer Cells. J. Food Hyg. Saf., 34, 303-308 (2019). https://doi.org/10.13103/JFHS.2019.34.3.303
  14. Tomasiak, M.M., Tomasiak, M., Zietkowski, Z., Skiepko, R., Bodzenta-Lukaszyk, A., N-acetyl-beta-hexosaminidase activity in asthma. Int. Arch. Allergy Immunol., 146, 133-137 (2008). https://doi.org/10.1159/000113516
  15. Grant, S.M., Goa, K.L., Fitton, A., Sorkin, E.M., Ketotifen. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in asthma and allergic disorders. Drugs., 40, 412-448 (1990). https://doi.org/10.2165/00003495-199040030-00006
  16. Fu, Y.S., Lue, S.I., Lin, S.Y., Luo, C.L., Chou, C.C., Weng, C.F., Plantago asiatica Seed Extracts Alleviated Blood Pressure in Phase I(-)Spontaneous Hypertension Rats. Molecules., 24, (2019).
  17. Gao, J., Zhang, Y.N., Cui, J., Zhang, J., Ming, Y., Hao, Z., Xu, H., Cheng, N., Zhang, D., Jin, Y., Lin, D. Lin, J., A Polysaccharide From the Whole Plant of Plantago asiatica L. Enhances the Antitumor Activity of Dendritic Cell-Based Immunotherapy Against Breast Cancer. Front Pharmacol., 12, 678865 (2021). https://doi.org/10.3389/fphar.2021.678865
  18. Yang, Q., Qi, M., Tong, R., Wang, D., Ding, L., Li, Z., Huang, C., Wang, Z., Yang, L., Plantago asiatica L. Seed Extract Improves Lipid Accumulation and Hyperglycemia in High-Fat Diet-Induced Obese Mice. Int. J. Mol. Sci., 18, (2017).
  19. Li, F., Huang, D., Nie, S., Xie, M., Polysaccharide from the Seeds of Plantago asiatica L. Protect Against Lipopolysaccharide-Induced Liver Injury. J. Med. Food, 22, 1058-1066 (2019). https://doi.org/10.1089/jmf.2018.4394
  20. Bak, J.P., Kim, J.B., Park, J.H., Yang, Y.J., Kim, I.S., Choung, E.S., Kang, S.C., Screening and compound isolation from natural plants for anti-allergic activity. J. Kor. Soc. Appl. Biological Chem., 54, 367-375 (2011). https://doi.org/10.3839/jksabc.2011.058
  21. Wu, H., Zhao, G., Jiang, K., Chen, X., Zhu, Z., Qiu, C., Li, C., Deng, G., Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-kappaB and MAPK activation. Int. Immunopharmacol., 35, 315-322 (2016). https://doi.org/10.1016/j.intimp.2016.04.013
  22. Bylka, W., Znajdek-Awizen, P., Studzinska-Sroka, E., Danczak-Pazdrowska, A., Brzezinska, M., Centella asiatica in dermatology: an overview. Phytother Res., 28, 1117-1124 (2014). https://doi.org/10.1002/ptr.5110
  23. Bylka, W., Znajdek-Awizen, P., Studzinska-Sroka, E., Brzezinska, M., Centella asiatica in cosmetology. Postepy Dermatol Alergol., 30, 46-49 (2013).
  24. Sun, B., Wu, L., Wu, Y., Zhang, C., Qin, L., Hayashi, M., Kudo, M., Gao, M., Liu, T., Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol., 11, 568032 (2020). https://doi.org/10.3389/fphar.2020.568032
  25. Han, A.R., Lee, S., Han, S., Lee, Y.J., Kim, J.B., Seo, E.K., Jung, C.H., Triterpenoids from the Leaves of Centella asiatica Inhibit Ionizing Radiation-Induced Migration and Invasion of Human Lung Cancer Cells. Evid Based Complement Alternat Med., 2020, 3683460 (2020).
  26. Wang, X., Cai, X., Wang, W., Jin, Y., Chen, M., Huang, X., Zhu, X., Wang, L., Effect of asiaticoside on endothelial cells in hypoxiainduced pulmonary hypertension. Mol. Med. Rep., 17, 2893-2900 (2018).
  27. Lee, J.W., Park, H.A., Kwon, O.K., Jang, Y.G., Kim, J.Y., Choi, B.K., Lee, H.J., Lee, S., Paik, J.H., Oh, S.R., Ahn, K.S., Lee, H.J., Asiatic acid inhibits pulmonary inflammation induced by cigarette smoke. Int Immunopharmacol., 39, 208-217 (2016). https://doi.org/10.1016/j.intimp.2016.07.010
  28. Cho, Y.C., Vuong, H.L., Ha, J., Lee, S., Park, J., Wibow, A.E., Cho, S., Inhibition of Inflammatory Responses by Centella asiatica via Suppression of IRAK1-TAK1 in Mouse Macrophages. Am. J. Chin. Med., 48, 1103-1120 (2020). https://doi.org/10.1142/s0192415x20500548
  29. George, M., Joseph, L., Ramaswamy. Anti-allergic, anti-pruritic, and anti-inflammatory activities of Centella asiatica extracts. Afr. J. Tradit Complement Altern Med., 6, 554-559 (2009).
  30. Kwak, Y., Ju, J., Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells. Nutr. Res. Pract, 9, 11-16 (2015). https://doi.org/10.4162/nrp.2015.9.1.11
  31. Lim, H.J., Woo, K.W., Lee, K.R., Lee, S.K., Kim, H.P., Inhibition of Proinflammatory Cytokine Generation in Lung Inflammation by the Leaves of Perilla frutescens and Its Constituents. Biomol. Ther. (Seoul), 22, 62-67 (2014). https://doi.org/10.4062/biomolther.2013.088
  32. Chen, M.L., Wu, C.H., Hung, L.S., Lin, B.F., Ethanol Extract of Perilla frutescens Suppresses Allergen-Specific Th2 Responses and Alleviates Airway Inflammation and Hyperreactivity in Ovalbumin-Sensitized Murine Model of Asthma. Evid Based Complement Alternat Med., 2015, 324265 (2015).
  33. Yang, H., Sun, W., Fan, Y.N., Li, S.Y., Yuan, J.Q., Zhang, Z.Q., Li, X.Y., Lin, M.B., Hou, Q., Perilla Leaf Extract Attenuates Asthma Airway Inflammation by Blocking the Syk Pathway. Mediators Inflamm., 2021, 6611219 (2021).