DOI QR코드

DOI QR Code

Operation Availability Analysis Model Development for High Altitude Long Endurance Solar Powered UAV

고고도 장기체공 태양광 무인기의 운용 가용성 분석 모델 연구

  • 봉재환 (상명대학교 휴먼지능로봇공학과) ;
  • 정성균 (상명대학교 휴먼지능로봇공학과)
  • Received : 2022.04.08
  • Accepted : 2022.06.17
  • Published : 2022.06.30

Abstract

High Altitude Long Endurance(HALE) solar powered UAV is the vehicle that flies for a long time as solar power energy sources. It can be used to replace satellites or provide continuous service because it can perform long-term missions at high altitudes. Due to the property of the mission, it is very important for HALE solar powered UAV to have maximum flight time. It is required for mission performance to fly at high altitudes continuously except a return for temporary maintenance. Therefore mission availability time analysis is a critical factor in the commercialization of HALE solar powered UAV. In this paper, we presented an analytic model and logic for available time analysis based on the design parameters of HALE solar powered UAV. This model can be used to analyze the possibility of applying UAV according to the UAV's mission in concept design before the UAV detail design stage.

고고도 장기체공 태양광 무인기는 성층권에서 태양광을 에너지원으로 장기간 비행하며 임무를 수행하는 무인기를 의미하며 고고도에서 장기적으로 임무 수행이 가능하여 지역적으로 통신위성 대체, 군사적 목적으로 임시 통신망 구축, 지상 촬영을 통한 감시 정찰 기능 등으로 사용할 수 있다. 이런 임무특성상 임무 수행 가용시간을 분석하는 것은 무인기를 상용화하는 데 매우 중요한 요소이다. 하지만 고고도에서 태양광 전력의 획득은 운용 위도와 계절에 영향을 받고 여러 요소가 복합적으로 작용하여 가용일수의 분석이 쉽지 않다. 본 논문에서는 고고도 장기체공 무인기의 설계 파라미터를 바탕으로 가용시간의 분석 모델 및 로직을 제시하고 태양광 획득 조건에 따른 고고도 장기체공 태양광 무인기의 가용시간을 분석하였다.

Keywords

Acknowledgement

본 여구는 2021학년도 상명대학교 교내연구비를 지원받아 수행하였음.

References

  1. S. Kim, "A Study on the collision avoidance system between aircraft and drones due to the activation of the drone industry," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 5, 2021, pp. 969-974. https://doi.org/10.13067/JKIECS.2021.16.5.969
  2. H. Runge, W. Rack, and M. Hepperle, "A Solar Powered Hale-UAV for Arctic Research," The 1st Council of European Aerospace Societies European Air and Space Conference, Berlin, Germany, 2007, pp. 1-6.
  3. M. Hasan, J. Svorcan, D. Tanovic, G. Bas, and N. Durakbasa, Conceptual Design and Fluid Structure Interaction Analysis of a Solar Powered High-Altitude Pseudo-Satellite (HAPS) UAV Wing Model. Switzerland: Springer, 2020, pp. 93-105.
  4. W. Zhang, L. Zhang, Z Yan, and L. Wang, "Structural Design and Difficulties of Solar UAV," IOP Conf. Series: Materials Science and Engineering, vol. 608, 2019, pp. 1-6.
  5. N. Maliky, M. Moelyadi, and E. Amalia, "Influence of solar panel on wing aerodynamic characteristics of HALE UAV," IOP Conference Series: Materials Science and Engineering, 11th AUN/SEED-Net Regional Conference on Mechanical and Manufacturing Engineering, Manila, Philippines, 2021.
  6. X. Gao, Z. Hou, Z. Guo, X. Zhu, J. Liu, and X. Chen, "Parameters Determination for Concept Design of Solar-powered, High-altitude long-endurance UAV," Aircraft Engineering and Aerospace Technology, vol. 85, no. 4, 2013, pp. 293-303. https://doi.org/10.1108/AEAT-Jan-2012-0011
  7. J. Lee, C. Lee, S. Lim, K. Kim, and J. Han, "A Sizing Method for Solar Power Long Endurance UAVs," The journal of the Korean Society for Aeronautical & Space Sciences(KSAS), vol. 38, no. 8, 2010, pp. 758-766. https://doi.org/10.5139/JKSAS.2010.38.8.758
  8. S. Nazarudeen, W. Harasani, and A. Rafique, "Conceptual design of a Solar HALE UAV," Journal of Advanced Research Design, vol. 44, no. 1, 2018, pp. 30-40.
  9. J. Lim, "A study on the development of high-efficiency transmitting and receiving coils for wireless charging of drones," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 2, 2022, pp. 213-218.
  10. P. Rajendran and H. Smith, "Implications of longitude and latitude on the size of solar-powered UAV," Energy Conversion and Management, vol. 98, 2015, pp. 107-114. https://doi.org/10.1016/j.enconman.2015.03.110
  11. G. Eder, G. Padilla, K. Kim, S. Park, and K. Yu, "Flight Path Planning of Solar-Powered UAV for Sustainable Communication Relay," IEEE ROBOTICS AND AUTOMATION LETTERS, vol. 5, no. 4, 2020, pp. 6772-6779. https://doi.org/10.1109/lra.2020.3014635
  12. A. Alsahlani, Design of a Swept-Wing High-Altitude Long-Endurance Unmanned Air Vehicle (HALE UAV). Ph.D. dissertation, University of Salford, 2017.