DOI QR코드

DOI QR Code

Biomechanical evaluations of the long-term stability of dental implant using finite element modeling method: a systematic review

  • 투고 : 2022.02.09
  • 심사 : 2022.05.17
  • 발행 : 2022.06.30

초록

PURPOSE. The aim of this study is to summarize various biomechanical aspects in evaluating the long-term stability of dental implants based on finite element method (FEM). MATERIALS AND METHODS. A comprehensive search was performed among published studies over the last 20 years in three databases; PubMed, Scopus, and Google Scholar. The studies are arranged in a comparative table based on their publication date. Also, the variety of modeling is shown in the form of graphs and tables. Various aspects of the studies conducted were discussed here. RESULTS. By reviewing the titles and abstracts, 9 main categories were extracted and discussed as follows: implant materials, the focus of the study on bone or implant as well as the interface area, type of loading, element shape, parts of the model, boundary conditions, failure criteria, statistical analysis, and experimental tests performed to validate the results. It was found that most of the studied articles contain a model of the jaw bone (cortical and cancellous bone). The material properties were generally derived from the literature. Approximately 43% of the studies attempted to examine the implant and surrounding bone simultaneously. Almost 42% of the studies performed experimental tests to validate the modeling. CONCLUSION. Based on the results of the studies reviewed, there is no "optimal" design guideline, but more reliable design of implant is possible. This review study can be a starting point for more detailed investigations of dental implant longevity.

키워드

참고문헌

  1. Chen LJ, He H, Li YM, Li T, Guo XP, Wang RF. Finite element analysis of stress at the implant-bone interface of dental implants with different structures. Trans Nonferrous Met Soc Chin 2011;21:1602-10. https://doi.org/10.1016/S1003-6326(11)60903-5
  2. Chang CL, Chen CS, Huang CH, Hsu ML. Finite element analysis of the dental implant using a topology optimization method. Med Eng Phys 2012;34:999-1008. https://doi.org/10.1016/j.medengphy.2012.06.004
  3. Chang HS, Chen YC, Hsieh YD, Hsu ML. Stress distribution of two commercial dental implant systems: a three-dimensional finite element analysis. J Dent Sci 2013;8:261-71. https://doi.org/10.1016/j.jds.2012.04.006
  4. Omori M, Sato Y, Kitagawa N, Shimura Y, Ito M. A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model. Int J Implant Dent 2015;1:10. https://doi.org/10.1186/s40729-015-0011-5
  5. Wu AY, Hsu JT, Chee W, Lin YT, Fuh LJ, Huang HL. Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: in-vitro experimental and three-dimensional finite element analyses. J Formos Med Assoc 2016;115:794-800. https://doi.org/10.1016/j.jfma.2016.01.002
  6. Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 2009;19:319-38. https://doi.org/10.1615/CritRevEukarGeneExpr.v19.i4.50
  7. Paracchini L, Barbieri C, Redaelli M, Di Croce D, Vincenzi C, Guarnieri R. Finite element analysis of a new dental implant design optimized for the desirable stress distribution in the surrounding bone region. Prosthesis 2020;2:225-36. https://doi.org/10.3390/prosthesis2030019
  8. Ueda N, Takayama Y, Yokoyama A. Minimization of dental implant diameter and length according to bone quality determined by finite element analysis and optimized calculation. J Prosthodont Res 2017;61:324-32. https://doi.org/10.1016/j.jpor.2016.12.004
  9. Hussein MO. Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis. J Adv Prosthodont 2013;5:333-40. https://doi.org/10.4047/jap.2013.5.3.333
  10. Al-Zubaidi SM, Madfa AA, Mufadhal AA, Aldawla MA, Hameed OS and Yue X-G. Improvements in clinical durability from functional biomimetic metallic dental implants. Front Mater 2020;7:106. https://doi.org/10.3389/fmats.2020.00106
  11. Marcian P, Wolff J, Horackova L, Kaiser J, Zikmund T, Borak L. Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med 2018;96:157-65. https://doi.org/10.1016/j.compbiomed.2018.03.012
  12. Oliveira H, Brizuela Velasco A, Rios-Santos JV, Sanchez Lasheras F, Lemos BF, Gil FJ, Carvalho A, Herrero-Climent M. Effect of different implant designs on strain and stress distribution under non-axial loading: a three-dimensional finite element analysis. Int J Environ Res Public Health 2020;17:4738. https://doi.org/10.3390/ijerph17134738
  13. Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Eng Reg 2020;1:6-18. https://doi.org/10.1016/j.engreg.2020.05.003
  14. Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20. https://doi.org/10.1016/j.jdent.2010.05.013
  15. Hong HC, Chang Y, Pan YH. The stability of implant-abutment complex with different implant-abutment connection designs, review of literature. J Oral Maxillofac Surg 2015;26:262-86.
  16. Shemtov-Yona K, Rittel D. Fatigue of dental implants: facts and fallacies. Dent J (Basel) 2016;4:16. https://doi.org/10.3390/dj4020016
  17. ISO 14801. Dentistry-implants-dynamic fatigue test for end osseous dental implants. International Standards Organization (ISO); Geneva; Switzerland, 2007.
  18. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85:585-98. https://doi.org/10.1067/mpr.2001.115251
  19. Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent 2003;12:306-17. https://doi.org/10.1097/01.id.0000091140.76130.a1
  20. Niroomand MR, Arabbeiki M. Effect of the dimensions of implant body and thread on bone resorption and stability in trapezoidal threaded dental implants: a sensitivity analysis and optimization. Comput Methods Biomech Biomed Engin 2020;23:1005-13. https://doi.org/10.1080/10255842.2020.1782390
  21. Jadhav L, Kapole S, Dhatrak P, Palange A. Design of experiments (DoE) based optimization of dental implants: a review. AIP Conf Proc 2021;2358:1-13.
  22. Bandyopadhyay A, Espana F, Balla VK, Bose S, Ohgami Y, Davies NM. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater 2010;6:1640-8. https://doi.org/10.1016/j.actbio.2009.11.011
  23. Ji F, Zhang C, Chen X. Structure optimization of porous dental implant based on 3D printing. IOP Conf Ser Mater Sci Eng 2018;324:012060.
  24. Kunavisarut C, Lang LA, Stoner BR, Felton DA. Finite element analysis on dental implant-supported prostheses without passive fit. J Prosthodont 2002;11:30-40. https://doi.org/10.1111/j.1532-849X.2002.00030.x
  25. Perriard J, Wiskott WA, Mellal A, Scherrer SS, Botsis J, Belser UC. Fatigue resistance of ITI implant-abutment connectors - a comparison of the standard cone with a novel internally keyed design. Clin Oral Implants Res 2002;13:542-9. https://doi.org/10.1034/j.1600-0501.2002.130515.x
  26. Genna F. On the effects of cyclic transversal forces on osseointegrated dental implants: experimental and finite element shakedown analyses. Comput Methods Biomech Biomed Engin 2003;6:141-52. https://doi.org/10.1080/1025584031000091696
  27. Kayabasi O, Yuzbasioglu E, Erzincanli F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw 2006;37:649-58. https://doi.org/10.1016/j.advengsoft.2006.02.004
  28. Wierszycki M, Kakol W, Lodygowski T. Fatigue algorithm for dental implant. Found Civ Environ Eng 2006; 7:363-80.
  29. Yang J, Xiang HJ. A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. J Biomech 2007;40:2377-85. https://doi.org/10.1016/j.jbiomech.2006.11.019
  30. Kong L, Gu Z, Li T, Wu J, Hu K, Liu Y, Zhou H, Liu B. Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis. Int J Prosthodont 2009;22:607-15.
  31. Hasan I, Heinemann F, Aitlahrach M, Bourauel C. Biomechanical finite element analysis of small diameter and short dental implant. Biomed Tech (Berl) 2010;55:341-50. https://doi.org/10.1515/BMT.2010.049
  32. Perez M. Life prediction of different commercial dental implants as influence by uncertainties in their fatigue material properties and loading conditions. Comput Methods Programs Biomed 2012;108:1277-86. https://doi.org/10.1016/j.cmpb.2012.04.013
  33. Hasan I, Roger B, Heinemann F, Keilig L, Bourauel C. Influence of abutment design on the success of immediately loaded dental implants: experimental and numerical studies. Med Eng Phys 2012;34:817-25. https://doi.org/10.1016/j.medengphy.2011.09.023
  34. Tsai YT, Wang KS, Woo JC. Fatigue life and reliability evaluation for dental implants based on computer simulation and limited test data. J Mech Eng Sci 2012;227:554-64. https://doi.org/10.1177/0954406212463532
  35. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater 2012;100:1044-52.
  36. Ali B, Chikh EBO, Meddah HM, Merdji A, Bouiadjra BAB. Effects of overloading in mastication on the mechanical behaviour of dental implants. Mater Des 2013;47:210-7. https://doi.org/10.1016/j.matdes.2012.12.019
  37. Covani U, Ricci M, Tonelli P, Barone A. An evaluation of new designs in implant-abutment connections: a finite element method assessment. Implant Dent 2013;22:263-7. https://doi.org/10.1097/ID.0b013e318292625f
  38. Geringer A, Diebels S, Nothdurft FP. Influence of superstructure geometry on the mechanical behavior of zirconia implant abutments: a finite element analysis. Biomed Tech (Berl) 2014;59:501-6. https://doi.org/10.1515/bmt-2013-0088
  39. Ayllon JM, Navarro C, Vazquez J, Dominguez J. Fatigue life estimation in dental implants. Eng Fract Mech 2014;123:34-43. https://doi.org/10.1016/j.engfracmech.2014.03.011
  40. Bulaqi HA, Mousavi Mashhadi M, Safari H, Samandari MM, Geramipanah F. Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis. J Prosthet Dent 2015;113:548-57. https://doi.org/10.1016/j.prosdent.2014.11.007
  41. Hernandez BA, Paterno A, Sousa EAC, De Oliveira Freitas JP, Foschini CR. Fatigue analysis of dental prostheses by finite element method (FEM). IMECE 2015;3.
  42. Hernandez-Rodriguez MAL, Contreras-Hernandez GR, Juarez-Hernandez A, Beltran-Ramirez B, Garcia-Sanchez E. Failure analysis in a dental implant. Eng Fail Anal 2015;57:236-42. https://doi.org/10.1016/j.engfailanal.2015.07.035
  43. Prados-Privado M, Prados-Frutos JC, Manchon A, Rojo R, Felice P, Bea JA. Dental implants fatigue as a possible failure of implantologic treatment: the importance of randomness in fatigue behaviour. Biomed Res Int 2015;2015:825402.
  44. Toyoshima Y, Wakabayashi N. Load limit of mini-implants with reduced abutment height based on fatigue fracture resistance: experimental and finite element study. Int J Oral Maxillofac Implants 2015;30:e10-6. https://doi.org/10.11607/jomi.3653
  45. Bicudo P, Reis J, Deus AM, Reisa L, Vaza MF. Mechanical behaviour of dental implants. Procedia Struct Integr 2016;1:26-33. https://doi.org/10.1016/j.prostr.2016.02.005
  46. Szajek K, Wierszycki M. Numerical verification of two-component dental implant in the context of fatigue life for various load cases. Acta Bioeng Biomech 2016;18:103-13.
  47. Bicudo P, Reis J, Deus AM, Reisa L, Vaza MF. Performance evaluation of dental implants: An experimental and numerical simulation study. Theor Appl Fract Mech 2016;85:74-83. https://doi.org/10.1016/j.tafmec.2016.08.014
  48. Prados-Privado M, Prados-Frutos JC, Calvo-Guirado JL, Bea JA. A random fatigue of mechanize titanium abutment studied with Markoff chain and stochastic finite element formulation. Comput Methods Biomech Biomed Engin 2016;19:1583-91. https://doi.org/10.1080/10255842.2016.1170124
  49. Wu T, Fan H, Ma R, Chen H, Li Z, Yu H. Effect of lubricant on the reliability of dental implant abutment screw joint: An in vitro laboratory and three-dimension finite element analysis. Mater Sci Eng C Mater Biol Appl 2017;75:297-304. https://doi.org/10.1016/j.msec.2016.11.041
  50. Geramizadeh M, Katoozian H, Amid R, Kadkhodazadeh M. Finite element analysis of dental implants with and without microthreads under static and dynamic loading. J Long Term Eff Med Implants 2017;27:25-35. https://doi.org/10.1615/JLongTermEffMedImplants.2017020007
  51. Bordin D, Bergamo ETP, Fardin VP, Coelho PG, Bonfante EA. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis. J Mech Behav Biomed Mater 2017;71:244-9. https://doi.org/10.1016/j.jmbbm.2017.03.022
  52. Prados-Privado M, Bea JA, Rojo R, Gehrke SA, Calvo-Guirado JL, Prados-Frutos JC. A new model to study fatigue in dental implants based on probabilistic finite elements and cumulative damage model. Appl Bionics Biomech 2017;2017:3726361. https://doi.org/10.1155/2017/3726361
  53. de la Rosa Castolo G, Guevara Perez SV, Arnoux PJ, Badih L, Bonnet F, Behr M. Mechanical strength and fracture point of a dental implant under certification conditions: a numerical approach by finite element analysis. J Prosthet Dent 2018;119:611-9. https://doi.org/10.1016/j.prosdent.2017.04.030
  54. Yamaguchi S, Yamanishi Y, Machado LS, Matsumoto S, Tovar N, Coelho PG, Thompson VP, Imazato S. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models. J Prosthodont Res 2018;62:24-30. https://doi.org/10.1016/j.jpor.2017.03.006
  55. Cinel S, Celik E, Sagirkaya E, Sahin O. Experimental evaluation of stress distribution with narrow diameter implants: A finite element analysis. J Prosthet Dent 2018;119:417-25. https://doi.org/10.1016/j.prosdent.2017.04.024
  56. Cervino G, Romeo U, Lauritano F, Bramanti E, Fiorillo L, D'Amico C, Milone D, Laino L, Campolongo F, Rapisarda S, Cicciu M. FEM and von Mises analysis of OSSTEM® dental implant structural components: evaluation of different direction dynamic loads. Open Dent J 2018;12:219-29. https://doi.org/10.2174/1874210601812010219
  57. Geramizadeh M, Katoozian H, Amid R, Kadkhodazadeh M. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis. J Korean Assoc Oral Maxillofac Surg 2018;44:59-65. https://doi.org/10.5125/jkaoms.2018.44.2.59
  58. Topkaya H, Kaman MO. Effect of dental implant dimensions on fatigue behaviour: a numerical approach. Uludag universitesi Muhendislik Fakultesi Dergisi 2018;23:249-60.
  59. Abasolo M, Aguirrebeitia J, Vallejo J, Albizuri J, Coria I. Influence of vertical misfit in screw fatigue behavior in dental implants: a three-dimensional finite element approach. Proc Inst Mech Eng H 2018;232:1117-28. https://doi.org/10.1177/0954411918806325
  60. Duan Y, Gonzalez JA, Kulkarni PA, Nagy WW, Griggs JA. Fatigue lifetime prediction of a reduced-diameter dental implant system: numerical and experimental study. Dent Mater 2018;34:1299-309. https://doi.org/10.1016/j.dental.2018.06.002
  61. Bayata F, Yildiz C. The mechanical behaviors of various dental implant materials under fatigue. Adv Mater Sci Eng 2018:5047319.
  62. Prados-Privado M, Sergio G, Rojo R, Prados-Frutos JC. Complete mechanical characterization of an external hexagonal implant connection: in vitro study, 3D FEM and probabilistic fatigue. Med Biol Eng Comput 2018;56:2233-44. https://doi.org/10.1007/s11517-018-1846-8
  63. Lee H, Park S, Noh G. Biomechanical analysis of 4 types of short dental implants in a resorbed mandible. J Prosthet Dent 2019;121:659-70. https://doi.org/10.1016/j.prosdent.2018.07.013
  64. Wang Y, Chen X, Zhang C, Feng W, Zhang P, Chen Y, Huang J, Luo Y, Chen J. Studies on the performance of selective laser melting porous dental implant by finite element model simulation, fatigue testing and in vivo experiments. Proc Inst Mech Eng H 2019;233:170-80.
  65. Bataineh K, Al Janaideh M. Effect of different biocompatible implant materials on the mechanical stability of dental implants under excessive oblique load. Clin Implant Dent Relat Res 2019;21:1206-17. https://doi.org/10.1111/cid.12858
  66. Manea A, Baciut G, Baciut M, Pop D, Comsa DS, Buiga O, Trombitas V, Colosi H, Mitre I, Bordea R, Manole M, Lenghel M, Bran S, Onisor F. New dental implant with 3d shock absorbers and tooth-like mobility-prototype development, finite element analysis (FEA), and mechanical testing. Materials (Basel) 2019;12:3444. https://doi.org/10.3390/ma12203444
  67. Prados-Privado M, Ivorra C, Martinez-Martinez C, Gehrke SA, Calvo-Guirado JL, Prados-Frutos JC. A finite element analysis of the fatigue behavior and risk of failure of immediate provisional implants. Metals 2019;9:535. https://doi.org/10.3390/met9050535
  68. Zhang X, Mao J, Zhou Y, Ji F, Chen X. Study on statics and fatigue analysis of dental implants in the descending process of alveolar bone level. Proc Inst Mech Eng H 2020;234:843-53. https://doi.org/10.1177/0954411920926080
  69. Sahin SC. Static and dynamic stress analysis of standard- and narrow-diameter implants: a 3D finite element analysis. Int J Oral Maxillofac Implants 2020;35:e58-68. https://doi.org/10.11607/jomi.8037
  70. Nokar S, Jalali H, Nozari F, Arshad M. Finite element analysis of stress in bone and abutment-implant interface under static and cyclic loadings. Front Dent 2020;17:1-8.
  71. Armentia M, Abasolo M, Coria I, Albizuri J. Fatigue design of dental implant assemblies: a nominal stress approach. Metals 2020;10:744. https://doi.org/10.3390/met10060744
  72. Bayata F, Yildiz C. The effects of design parameters on mechanical failure of Ti-6Al-4V implants using finite element analysis. Eng Fail Anal 2020;110:104445. https://doi.org/10.1016/j.engfailanal.2020.104445
  73. Lee H, Jo M, Noh G. Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: A finite element analysis. Comput Methods Programs Biomed 2021;200:105863. https://doi.org/10.1016/j.cmpb.2020.105863
  74. Bergamo ETP, Yamaguchi S, Coelho PG, Lopes ACO, Lee C, Bonfante G, Benalcazar Jalkh EB, de Araujo-Junior ENS, Bonfante EA. Survival of implant-supported resin-matrix ceramic crowns: In silico and fatigue analyses. Dent Mater 2021;37:523-33. https://doi.org/10.1016/j.dental.2020.12.009
  75. Nicholson JW. Titanium alloys for dental implants: a review. Prosthesis 2020;2:100-16. https://doi.org/10.3390/prosthesis2020011
  76. Koike M, Lockwood PE, Wataha JC, Okabe T. Initial cytotoxicity of novel titanium alloys. J Biomed Mater Res B Appl Biomater 2007;83:327-31.
  77. Liu X, Chen S, Tsoi JKH, Matinlinna JP. Binary titanium alloys as dental implant materials-a review. Regen Biomater 2017;4:315-23. https://doi.org/10.1093/rb/rbx027
  78. Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: a comprehensive review. World J Clin Cases 2015;3:52-7. https://doi.org/10.12998/wjcc.v3.i1.52
  79. Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing 2006;35:27-31.
  80. Ovesy M, Voumard B, Zysset P. A nonlinear homogenized finite element analysis of the primary stability of the bone-implant interface. Biomech Model Mechanobiol 2018;17:1471-80. https://doi.org/10.1007/s10237-018-1038-3
  81. Gao X, Fraulob M, Haiat G. Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface 2019;16:20190259. https://doi.org/10.1098/rsif.2019.0259
  82. Gallucci GO, Hamilton A, Zhou W, Buser D, Chen S. Implant placement and loading protocols in partially edentulous patients: A systematic review. Clin Oral Implants Res 2018;29:106-34.
  83. Gapski R, Wang HL, Mascarenhas P, Lang NP. Critical review of immediate implant loading. Clin Oral Implants Res 2003;14:515-27. https://doi.org/10.1034/j.1600-0501.2003.00950.x
  84. Colomina LE. Immediate loading of implant-fixed mandibular prostheses: a prospective 18-month follow-up clinical study-preliminary report. Implant Dent 2001;10:23-9. https://doi.org/10.1097/00008505-200101000-00008
  85. Horiuchi K, Uchida H, Yamamoto K, Sugimura M. Immediate loading of Branemark system implants following placement in edentulous patients: a clinical report. Int J Oral Maxillofac Implants 2000;15:824-30.
  86. Longva A, Loschner F, Kugelstadt T, Fernandez-Fernandez JA, Bender J. Higher-order finite elements for embedded simulation. ACM Trans Graph 2020;39:1-14.
  87. Lopez B, Arruda MRT, Almeida-Fernandez L, Castro L, Silvestre N, Correia JR. Assessment of mesh dependency in the numerical simulation of compact tension tests for orthotropic materials. Composite Part C: Open Access 2020:1:100006. https://doi.org/10.1016/j.jcomc.2020.100006
  88. Flanagan D. Osseous remodeling around dental implants. J Oral Implantol 2019;45:239-46. https://doi.org/10.1563/aaid-joi-d-18-00130
  89. Haase K, Rouhi G. Prediction of stress shielding around an orthopedic screw: using stress and strain energy density as mechanical stimuli. Comput Biol Med 2013;43:1748-57. https://doi.org/10.1016/j.compbiomed.2013.07.032
  90. Tortorelli DA, Michaleris P. Design sensitivity analysis: overview and review. Inverse Probl Sci Eng 1994;1:71-105. https://doi.org/10.1080/174159794088027573
  91. Blazquez-Hinarejos M, Ayuso-Montero R, Jane-Salas E, Lopez-Lopez J. Influence of surface modified dental implant abutments on connective tissue attachment: a systematic review. Arch Oral Biol 2017;80:185-92. https://doi.org/10.1016/j.archoralbio.2017.04.020
  92. Ding X, Zhu XH, Liao SH, Zhang XH, Chen H. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis. J Prosthodont 2009;18:393-402. https://doi.org/10.1111/j.1532-849x.2009.00453.x
  93. Raffa ML, Nguyen VH, Hernigou P, Flouzat-Lachaniette CH, Haiat G. Stress shielding at the bone-implant interface: Influence of surface roughness and of the bone-implant contact ratio. J Orthop Res 2021;39:1174-83. https://doi.org/10.1002/jor.24840
  94. Kim JE, Shin JM, Oh SO, Yi WJ, Heo MS, Lee SS, Choi SC, Huh KH. The three-dimensional microstructure of trabecular bone: analysis of site-specific variation in the human jaw bone. Imaging Sci Dent 2013;43:227-33. https://doi.org/10.5624/isd.2013.43.4.227
  95. De Martinis M, Sirufo MM, Polsinelli M, Placidi G, Di Silvestre D, Ginaldi L. Gender differences in osteoporosis: a single-center observational study. World J Mens Health 2021;39:750-9. https://doi.org/10.5534/wjmh.200099
  96. Carpenter RD, Klosterhoff BS, Torstrick FB, Foley KT, Burkus JK, Lee CSD, Gall K, Guldberg RE, Safranski DL. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: a finite element analysis comparing titanium and PEEK. J Mech Behav Biomed Mater 2018;80:68-76. https://doi.org/10.1016/j.jmbbm.2018.01.017
  97. Aguilar C, Arancibia M, Alfonso I, Sancy M, Tello K, Salinas V, De Las Cuevas F. Influence of porosity on the elastic modulus of Ti-Zr-Ta-Nb foams with a low Nb content. Metals 2019;9:176. https://doi.org/10.3390/met9020176
  98. Abbasi N, Hamlet S, Love RM, Nam-Trung N. Porous scaffolds for bone regeneration. J Sci Adv Mater Dev 2020;5:1-9.