DOI QR코드

DOI QR Code

Modified 𝜃 projection model-based constant-stress creep curve for alloy 690 steam generator tube material

  • 투고 : 2021.05.03
  • 심사 : 2021.09.07
  • 발행 : 2022.03.25

초록

Steam generator (SG) tubes in a nuclear power plant can undergo rapid changes in pressure and temperature during an accident; thus, an accurate model to predict short-term creep damage is essential. The theta (𝜃) projection method has been widely used for modeling creep-strain behavior under constant stress. However, many creep test data are obtained under constant load, so creep rupture behavior under a constant load cannot be accurately simulated due to the different stress conditions. This paper proposes a novel methodology to obtain the creep curve under constant stress using a modified 𝜃 projection method that considers the increase in true stress during creep deformation in a constant-load creep test. The methodology is validated using finite element analysis, and the limitations of the methodology are also discussed. The paper also proposes a creep-strain model for alloy 690 as an SG material and a novel creep hardening rule we call the damage-fraction hardening rule. The creep hardening rule is applied to evaluate the creep rupture behavior of SG tubes. The results of this study show its great potential to evaluate the rupture behavior of an SG tube governed by creep deformation.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MIST) (2017M2A84015156).

참고문헌

  1. S. Sancaktar, M. Salay, R. Lyengar, A. Azarm, S. Majumdar, Consequential SGTR analysis for westinghouse and combustion engineering plants with thermally treated alloy, Steam Generator Tubes 600 (2016), 690, NUREG-2195.
  2. Idaho National Engineering Laboratory, Risk assessment of severe accident-induced steam generator tube rupture, NUREG 1570 (1998).
  3. S. Majumdar, W.J. Shack, D.R. Diercks, K. Mruk, J. Franklin, L. Knoblich, Failure behavior of internally pressurized flawed and unflawed steam generator tubing at high temperatures-experiments and comparison with model predictions, NUREG/CR 6575 (1998).
  4. S. Majumdar, Prediction of structural integrity of steam generator tubes under severe accident conditions, Nucl. Eng. Des. 194 (1999) 31-55. https://doi.org/10.1016/S0029-5493(99)00168-5
  5. J. Kim, W. Kim, C. Kim, Evaluation of Creep Properties of Alloy 690 Steam Generator Tubes at High Temperature Using Tube Specimen, ASME 2019 Pressure Vessels and Piping Conference, 2019. PVP2019-93498.
  6. A.S. Krausz, K. Krausz, Unified Constitutive Laws of Plastic Deformation, Academic Press, 1996, pp. 107-152.
  7. N.E. Dowling, Mechanical Behavior of Materials, Prentice Hall, 1999.
  8. P. Yu, W. Ma, A modified theta projection model for creep behavior of RPV steel 16MND5, J. Mater. Sci. Technol. 47 (2020) 231-242. https://doi.org/10.1016/j.jmst.2020.02.016
  9. R. Pohja, S. Holmstrom, H.Y. Lee, Strain and Damage-Based Analytical Methods to Determine the Kachanov-Rabotnov Tertiary Creep-Damage Constants, Brown University, 2012.
  10. M.S. Haque, C.M. Stewart, Comparative analysis of the sin-hyperbolic and Kachanov-Rabotnov creep-damage models, Int. J. Pres. Ves. Pip. 171 (2019) 1-9. https://doi.org/10.1016/j.ijpvp.2019.02.001
  11. V.S. Srinivasan, B.K. Choudhary, M.D. Mathew, T. Jayakumar, Creep behaviour of 9Cr-1Mo ferritic steel using theta-projection approach and evolution of a damage criterion, Trans. SMiRT 21 (DiveI) (2011). Paper, ID# 779.
  12. C. Fu, Y. Chen, X. Yuan, S. Tin, S. Antonov, K. Yagi, Q. Feng, A modified θ projection model for constant load creep curves-I. Introduction of the model, J. Mater. Sci. Technol. 35 (2019) 223-230. https://doi.org/10.1016/j.jmst.2018.09.024
  13. D.L. May, A.P. Gordon, The application of the Norton-bailey law for creep prediction through power law regression, Proc. ASME Turbo Expo (2013). GT2013-96008.
  14. J.M. Montes, F.G. Cuevas, J. Cintas, New creep law, Mater. Sci. Technol. 28 (2012) 377-379. https://doi.org/10.1179/1743284711y.0000000029
  15. B. Derby, M.F. Ashby, Power-laws and A-n correlation in creep, Scripta Metall. 18 (1984) 1079-1084. https://doi.org/10.1016/0036-9748(84)90182-0
  16. B.S. Lee, J.M. Kim, J.Y. Kwon, K.J. Choi, M.C. Kim, A practical power law creep modeling of alloy 690 SG tube materials, Nucl. Eng. Technol. (2021). Available Online.
  17. P.E. MacDonald, V.N. Shah, L.W. Ward, P.G. Elliso, Steam Generator Tube Failures, U.S. NRC, 1996. NUREG/CR-6365.
  18. K.J. Karwoski, G.L. Maker, M.G. Yoder, U.S. Operating Experience with Thermally Treated Alloy 690 Steam Generator Tubes, U.S., NRC, 2007. NUREG-1841.
  19. R.W. Evans, L. Beden, B. Wilshire, On Creep and Fracture of Engineering Materials and Structures, Pineridge Press, Swansea, 1984, p. 1277.
  20. ECCC, Recommendations and guidance for the assessment of creep strain and creep strength data, ECCC Recommend. 5 (2003) 38.
  21. W. Harrison, Z. Abdallah, M. Whittaker, A model for creep and creep damage in the γ-titanium aluminide Ti-45Al-2Mn-2Nb, Materials 7 (2014) 2194-2209. https://doi.org/10.3390/ma7032194
  22. C. Fu, Y. Chen, X. Yuan, S. Tin, S. Antonov, K. Yagi, Q. Feng, A modified θ projection model for constant load creep curves-II. Application of creep life prediction, J. Mater. Sci. Technol. 35 (2019) 687-694. https://doi.org/10.1016/j.jmst.2018.09.035
  23. S. Moon, J.M. Kim, J.Y. Kwon, B.S. Lee, K.J. Choi, M.C. Kim, Creep strain modeling for alloy 690 SG tube material based on modified theta projection method, Nucl. Eng. Technol., In Review..
  24. R.W. Evans, Statistical scatter and variability of creep property estimates in θ projection method, Mater. Sci. Technol. 5 (1989) 699-707. https://doi.org/10.1179/mst.1989.5.7.699
  25. Dassault, ABAQUS version 6.14. User's Manual, Dassault Systems Simulia, 2018.
  26. W.D. Day, A.P. Gordon, Life fraction hardening applied to a modified theta projection creep model for a Nickel-based super-alloy, Proc. ASME Turbo Expo (2014). GT2014-25881, 2014.
  27. S. Moon, Y.S. Chang, Y.J. Kim, J.H. Lee, M.H. Song, Y.H. Choi, S.S. Hwang, Assessment of plastic collapse behavior for tubes with collinear cracks, Eng. Fract. Mech. 73 (2006) 296-308. https://doi.org/10.1016/j.engfracmech.2005.07.009