Acknowledgement
This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS), granted financial resource from the Nuclear Safety and Security Commission (NSSC), Republic of Korea. (No. 1903002)
References
- S.G. Shin, Analysis of Two-phase Constitutive Relation Models Implemented in Thermal-Hydraulic System Analysis Codes, 2019.
- S.G. Shin, J.I. Lee, A. Shin, M.K. Cho, et al., RELAP5 and TRACE Constitutive Relations Comparison (NUREG/IA-0522), US Nuclear Regulatory Commission, 2020.
- J. Zhang, et al., Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network, Nucl. Eng. Technol. 51 (8) (2019) 1897-1904. https://doi.org/10.1016/j.net.2019.06.009
- E.F. Tanjung, B.O. Alunda, Y.J. Lee, D. Jo, Experimental study of bubble behaviors and CHF on printed circuit board (PCB) in saturated pool water at various inclination angles, Nucl. Eng. Technol. 50 (7) (2018) 1068-1078. https://doi.org/10.1016/j.net.2018.06.011
- S. Jun, J.C. Godinez, S.M. You, H.Y. Kim, Pool boiling heat transfer of a copper microporous coating in borated water, Nucl. Eng. Technol. 52 (9) (2020) 1939-1944. https://doi.org/10.1016/j.net.2020.02.023
- T.-W. Ha, J.J. Jeong, B.-J. Yun, Improvement of the MARS subcooled boiling model for a vertical upward flow, Nucl. Eng. Technol. 51 (4) (2019) 977-986. https://doi.org/10.1016/j.net.2019.01.001
- P. Wu, X. Xiong, J. Shan, J. Gou, B. Zhang, B. Zhang, Improvement and validation of the wall heat transfer package of RELAP5/MOD3. 3, Nucl. Eng. Des. 310 (2016) 418-428. https://doi.org/10.1016/j.nucengdes.2016.10.049
- V.H. Ransom, J. Trapp, R. Wagner, in: Idaho (Ed.), RELAP5/MOD3. 3 Code Manual Volume IV: Models and Correlations, Information Systems Laboratories, IR, Maryland Idaho Falls, 2001.
- U. Nrc, TRACE V5. 0 Theory Manual-Field Equations, Solution Methods and Physical Models, United States Nucl. Regul. Comm, 2010.
- B.D. Chung, et al., MARS Code Manual Volume V: Models and Correlations, Korea Atomic Energy Research Institute, 2010.
- D. Bestion, System Code Models and Capabilities, 2008.
- A. De Crecy, P. Bazin, H. Glaeser, T. Skorek, J. Joucla, P. Probst, in: BEMUSE Phase III Report Uncertainty and Sensitivity Analysis of the LOFT L2-5 Test, vol. 4, NEA/CSNI/R (2007), 2007.
- F. Reventos, M. Perez, L. Batet, A. Guba, I. Toth, T. Mieusset, in: BEMUSE Phase V Report Uncertainty and Sensitivity Analysis of a LB-LOCA in ZION Nuclear Power Plant, vol. 13, NEA/CSNI/R, 2009, p. 2009.
- N. Basu, G.R. Warrier, V.K. Dhir, Onset of nucleate boiling and active nucleation site density during subcooled flow boiling, J. Heat Tran. 124 (4) (2002) 717-728. https://doi.org/10.1115/1.1471522
- J. Stewart, D. Groeneveld, Low-quality and subcooled film boiling of water at elevated pressures, Nucl. Eng. Des. 67 (2) (1982) 259-272. https://doi.org/10.1016/0029-5493(82)90145-5
- N. Lee, PWR FLECHT SEASET Unblocked Bundle, Forced and Gravity Reflood Task Data Evaluation and Analysis Report (No. 10), The Commission, 1982.
- T. Anklam, ORNL Small-Break LOCA Heat Transfer Test Series I: High-Pressure Reflood Analysis, Oak Ridge National Lab., TN (USA), 1981.
- C. Hyman, T. Anklam, M. White, Experimental Investigations of Bundle Boiloff and Reflood under High-Pressure Low Heat Flux Conditions, Oak Ridge National Lab., 1982.
- J.R. Sellars, M. Tribus, J. Klein, Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit: the Graetz Probem Extended, 1954.
- F. Dittus, L. Boelter, Heat transfer in automobile radiators of the tubular type, Int. Commun. Heat Mass Tran. 12 (1) (1985) 3-22. https://doi.org/10.1016/0735-1933(85)90003-X
- V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Eng. 16 (2) (1976) 359-368.
- J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (3) (1966) 322-329. https://doi.org/10.1021/i260019a023
- H. Forster, N. Zuber, Dynamics of vapor bubbles and boiling heat transfer, AIChE J. 1 (4) (1955) 531-535. https://doi.org/10.1002/aic.690010425
- K. Rezkallah, G. Sims, An examination of correlations of mean heat-transfer coefficients in two-phase two-component flow in vertical tubes, in: Heat Transfer: Pittsburgh, 1987, p. 1987.
- D. Gorenflo, E. Baumhogger, G. Herres, S. Kotthoff, Prediction methods for pool boiling heat transfer: a state-of-the-art review, Int. J. Refrig. 43 (2014) 203-226. https://doi.org/10.1016/j.ijrefrig.2013.12.012
- H.C. Hottel, W. McAdams, in: McGraw-Hill (Ed.), Heat Transmission, 1954. New York.
- W.H. McAdams, W. Kennel, C. Minden, R. Carl, P. Picornell, J. Dew, Heat transfer at high rates to water with surface boiling, Ind. Eng. Chem. 41 (9) (1949) 1945-1953. https://doi.org/10.1021/ie50477a027
- S. Levy, Generalized correlation of boiling heat transfer, J. Heat Tran. 810 (1959) 37-42. https://doi.org/10.1115/1.4008126
- J. Holman, Heat Transfer, 1986, Mc Gran-Hill Book Company, Soythern Methodist University, 1986.
- J.C. Chen, R. Sundaram, F. Ozkaynak, A Phenomenological Correlation for Post-CHF Heat Transfer," Lehigh Univ, Dept. of Mechanical Engineering and Mechanics, Bethlehem, Pa.(USA), 1977.
- T.A. Bjornard, P. Griffith, PWR blowdown heat transfer, in: Thermal and Hydraulic Aspects of Nuclear Reactor Safety, vol. I, 1977.
- L.A. Bromley, Heat Transfer in Stable Film Boiling, 1949.
- P.J. Berenson, Film-boiling heat transfer from a horizontal surface, J. Heat Tran. 83 (3) (1961) 351-356. https://doi.org/10.1115/1.3682280
- B.P. Breen, Effect of Diameter of Horizontal Tubes of Film Boiling, University of Illinois at Urbana-Champaign, 1961.
- K. Sun, J. Gonzalez-Santalo, C. Tien, Calculations of combined radiation and convection heat transfer in rod bundles under emergency cooling conditions, J. Heat Tran. 98 (3) (1976) 414-420. https://doi.org/10.1115/1.3450569
- N. Hammouda, D. Groeneveld, S. Cheng, Two-fluid modelling of inverted annular film boiling, Int. J. Heat Mass Tran. 40 (11) (1997) 2655-2670. https://doi.org/10.1016/S0017-9310(96)00278-5
- C.A. Sleicher, M. Rouse, A convenient correlation for heat transfer to constant and variable property fluids in turbulent pipe flow, Int. J. Heat Mass Tran. 18 (5) (1975) 677-683. https://doi.org/10.1016/0017-9310(75)90279-3
- A. Mills, Experimental investigation of turbulent heat transfer in the entrance region of a circular conduit, J. Mech. Eng. Sci. 4 (1) (1962) 63-77. https://doi.org/10.1243/JMES_JOUR_1962_004_010_02
- D. Groeneveld, S. Cheng, T. Doan, 1986 AECL-UO critical heat flux lookup table, Heat Tran. Eng. 7 (1-2) (1986) 46-62. https://doi.org/10.1080/01457638608939644
- D. Groeneveld, et al., The 1995 look-up table for critical heat flux in tubes, Nucl. Eng. Des. 163 (1-2) (1996) 1-23. https://doi.org/10.1016/0029-5493(95)01154-4