DOI QR코드

DOI QR Code

Improvement of the subcooled boiling model for the prediction of the onset of flow instability in an upward rectangular channel

  • Wisudhaputra, Adnan (School of Mechanical Engineering, Pusan National University) ;
  • Seo, Myeong Kwan (School of Mechanical Engineering, Pusan National University) ;
  • Yun, Byong Jo (School of Mechanical Engineering, Pusan National University) ;
  • Jeong, Jae Jun (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2021.07.26
  • 심사 : 2021.09.12
  • 발행 : 2022.03.25

초록

The MARS code has been assessed for the prediction of onset of flow instability (OFI) in a vertical channel. For assessment, we built an experiment database that consists of experiments under various geometry and thermal-hydraulic condition. It covers pressure from 0.12 to 1.73 MPa; heat flux from 0.67 to 3.48 MW/m2; inlet sub-cooling from 39 to 166 ℃; hydraulic diameters between 2.37 and 6.45 mm of rectangular channels and pipes. It was shown that the MARS code can predict the OFI mass flux for pipes reasonably well. However, it could not predict the OFI in a rectangular channel well with a mean absolute percentage error of 8.77%. In the cases of rectangular channels, the error tends to depend on the hydraulic diameter. Because the OFI is directly related to the subcooled boiling in a flow channel, we suggest a modified subcooled boiling model for better prediction of OFI in a rectangular channel; the net vapor generation (NVG) model and the modified wall evaporation model were modified so that the effect of hydraulic diameter and heat flux can be accurately considered. The assessment of the modified model shows the prediction of OFI mass flux for rectangular channels is greatly improved.

키워드

과제정보

This research was partly supported by the National Research Foundation (NRF) of South Korea (Grant code 2019M2D2A1A03056998).

참고문헌

  1. J.A. Boure, A.E. Bergles, L.S. Tong, Review of two phase instabilities, Nucl. Eng. Des. 25 (1973) 165-192. https://doi.org/10.1016/0029-5493(73)90043-5
  2. L.C. Ruspini, C.P. Marcel, A. Clausse, Two-phase flow instabilities: a review, Int. J. Heat Mass Tran. 71 (2014) 521-548. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.047
  3. M. Ishii, Study on Flow Instabilities in Two-phase Mixtures, Argonne National Laboratory, Argonne, 1976.
  4. M. Ledinegg, Instability of flow during natural and forced circulation, Die Warme 61 (1938) 891-898.
  5. C.E. Brennen, Fundamentals of Multiphase Flows, Cambridge University Press, 2005.
  6. O.S. Al-Yahia, D. Jo, ONB, OSV, and OFI for subcooled flow boiling through a narrow rectangular channel heated on one-side, Int. J. Heat Mass Tran. 116 (2017) 136-151. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.011
  7. G. Yadigaroglu, Two-phase flow instabilities and propagation phenomena, in: J.M. Delhaye, M. Giot, M.L. Riethmuller (Eds.), Thermohydraulics of Two-phase Systems for Industrial Design and Nuclear Engineering, vol. 2, McGraw-Hill, 1981.
  8. R.H. Whittle, R. Forgan, A correlation fo the minima in the pressure drop versus flow-rate curves for sub-cooled water flowing in a narrow heated channels, Nucl. Eng. Des. 6 (1967) 89-99. https://doi.org/10.1016/0029-5493(67)90049-0
  9. C.H. Seo, H.C. Kim, H.J. Park, H.T. Chae, Innovative design concepts for the KIJANG research reactor, in: Transactions of the Korean Nuclear Society Spring Meeting, 2013. Gwangju.
  10. S. Pinem, P.H. Liem, T.M. Sembiring, T. Surbakti, Fuel element burnup measurements for the equilibrium LEU silicide RSGGAS (MPR-30) core under a new fuel management strategy, Ann. Nucl. Energy 98 (2016) 211-217. https://doi.org/10.1016/j.anucene.2016.08.010
  11. Commissariat a l'Energue Atomique, Osiris Nuclear Reactors and Services Department, in: Commissariat A l'Energue Atomique, 2008. Saclay .
  12. M.D. DeHart, Z. Karriem, M.A. Pope, M.P. Johnson, Fuel Element Design and Analysis for Potential LEU Conversion of the Advanced Test Reactor, Idaho National Laboratory, Idaho Falls, 2018.
  13. J.P. Dupuy, G. Perotto, G. Ithurralde, C. Leydier, X. Bravo, Jules Horowitz Reactor: general layout. main design options resulting from safety options, technical performances and operating constrains, in: TRTR-2005/IGORR-10 Joint Meeting, 2005. Gaithersburg.
  14. A. Ghione, B. Noel, P. Vinai, C. Demaziere, Criteria for onset of flow instability in heated vertical narrow, Int. J. Heat Mass Tran. 105 (2017) 464-478. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.012
  15. S.E.-D. El-Morshedy, Predictive study of the onset of flow instability in narrow vertical rectangular channels under low pressure subcooled boiling, Nucl. Eng. Des. 244 (2012) 34-42. https://doi.org/10.1016/j.nucengdes.2011.12.019
  16. The RELAP5-3D© Code Development Team, RELAP5-3D© Code Manual Volume I: Code Structure, System Models and Solution Methods, Idaho National Laboratory, Idaho Falls, 2005.
  17. T. Hamidouche, A. Bousbia-salah, RELAP5/3.2 assessment against low pressure onset of flow instability, Ann. Nucl. Energy 33 (2006) 510-520. https://doi.org/10.1016/j.anucene.2006.01.004
  18. C. Park, H.T. Chae, H. Kim, Simulation of flow excursion in a narrow flow channel by using the MARS code, in: Transactions of the Korean Nuclear Society Spring Meeting, 2007. Jeju.
  19. J.J. Jeong, K.S. Ha, B.D. Chung, W.J. Lee, Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3.1, Ann. Nucl. Energy 26 (18) (1999) 1611-1642. https://doi.org/10.1016/S0306-4549(99)00039-0
  20. KAERI, MARS Code Manual Volume I: Code Structure, System Models, and Solution Methods, KAERI/TR-2812/2004, Korea Atomic Energy Research Institute, 2007.
  21. P. Saha, N. Zuber, Point of net vapor generation and vapor void fraction in subcooled boiling, in: International Heat Transfer Conference, vol. 5, 1974. Tokyo.
  22. R. Forgan, R.H. Whittle, Pressure-drop Characteristics for the Flow of Subcooled Water at Atmospheric Pressure in Narrow Heated Channels, United Kingdom Atomic Energy Authority, Berkshire, 1966.
  23. M. Siman-Tov, D.K. Felde, J.L. McDuffee, J. Graydon L. Yoder, Static flow instability in subcooled flow boiling in parallel channels, in: 2nd International Conference on Multiphase Flow, Kyoto, 1995.
  24. S. Fabrega, J. Lafay, P. Vernier, Remarques sur la determination des echauffements critiques dans les reacteurs de recherche, in: Commissariat A l'Energue Atomique, 1969. Saclay.
  25. V. Kalitvianski, Qualification of CATHARE 2 V1. 5 Rev. 6 on Subcooled Boiling Experiments (KIT Tests), CEA, Grenoble, 2000.
  26. K.S. Ha, Y.B. Lee, Improvements in predicting void fraction in subcooled boiling, Nucl. Technol. 150 (3) (2005) 283-292. https://doi.org/10.13182/nt05-a3622
  27. T.-W. Ha, J.J. Jeong, B. Yun, H.Y. Yoon, Improvement of the MARS subcooled boiling model for low-pressure, low-Pe flow conditions, Ann. Nucl. Energy 120 (2018) 236-245. https://doi.org/10.1016/j.anucene.2018.05.049
  28. T.-W. Ha, J.J. Jeong, B.-J. Yun, Improvement of the MARS subcooled boiling model for vertical upward flow, Nucl. Eng. Technol. 51 (2019) 977-986. https://doi.org/10.1016/j.net.2019.01.001
  29. T.-W. Ha, B.-J. Yun, J.J. Jeong, Improvement of the subcooled boiling model for thermal-hydraulic system codes, Nucl. Eng. Des. 364 (2020).
  30. M.K. Seo, Improvement of the MARS Subcooled Boiling Model for the Prediction of OFI, Pusan National University, Busan, 2020.
  31. A. Ghione, B. Noel, P. Vinai, C. Demaziere, Assessment of the thermal-hydraulic correlations for narrow rectangular channels with high heat flux and coolant velocity, Int. J. Heat Mass Tran. 99 (2016) 344-356. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.099
  32. B.D. Marcus, D. Dropkin, Measured temperature profiles within the superheated boundary layer above a horizontal surface in saturated nucleate pool boiling of water, J. Heat Tran. 87 (3) (1965) 333-370. https://doi.org/10.1115/1.3689109
  33. J.R. Wiebe, R.L. Judd, Superheat layer thickness measurements in saturated and subcooled nucleate boiling, J. Heat Tran. 93 (4) (1971) 455-461. https://doi.org/10.1115/1.3449845
  34. J. Liao, R. Mei, J.F. Klausner, The influence of the bulk liquid thermal boundary layer on saturated nucleate boiling, Int. J. Heat Fluid Flow 25 (2004) 196-208. https://doi.org/10.1016/j.ijheatfluidflow.2003.11.012
  35. H. Christensen, Power-to-void Transfer Functions, Argonne National Laboratory, Argonne, 1961.
  36. W.H. Cook, Boiling Density in Vertical Rectangular Multichannel Sections with Natural Circulation, Argonne National Laboratory, Lemont, 1956.
  37. J.F. Marchattere, The Effect of Pressure in Boiling Density in Multiple Rectangular Channel, Argonne National Laboratory, Lemont, 1956.
  38. J.F. Marchattere, M. Petrick, P.A. Lottes, R.J. Weatherhead, W.S. Flinn, Natural and Forced Circulation Boiling Studies, Argonne National Laboratory, Argonne, 1960.