DOI QR코드

DOI QR Code

Partitioning effects and corrosion characteristics of oxyapatite glass-ceramic wasteforms sequestering rare-earth elements

  • Kim, Miae (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology) ;
  • Kang, Jaehyuk (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology) ;
  • Yoon, Jang-Hee (Busan Centre, Korea Basic Science Institute) ;
  • Lee, Sang-Geul (Daegu Centre, Korea Basic Science Institute) ;
  • Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology) ;
  • Kim, Hyun Gyu (Busan Centre, Korea Basic Science Institute)
  • 투고 : 2021.04.11
  • 심사 : 2021.08.30
  • 발행 : 2022.03.25

초록

Oxyapatite[Ca2Nd8(SiO4)6O2] glass-ceramics have been suggested as wasteforms for the immobilisation of rare-earth radioactive nuclides because of their high waste-loading capability and good chemical durability. In particular, a partitioning effect is predicted to contribute to an enhancement of corrosion resistance in glass-ceramics compared with that of conjugate glasses of the same composition. Because rare-earths are inherently insoluble nuclides, detection of changes in corrosion behavior between glass-ceramics and conjugate glasses under normal conditions is not easy. In this study, therefore, we revealed the partitioning effect by exposing glass-ceramics and glasses to solution of pH 2, 7 and 10 at 90 ℃ for 20 d. In addition, we proposed the corrosion mechanism for oxyapatite glass-ceramics under various corrosion conditions. Especially, the glassy phase dissolved first, followed by the oxyapatite phase during pH 7 corrosion.

키워드

과제정보

This research was supported by 'NST*-KBSI Postdoctoral Research Fellowship for Young Scientists' at KBSI in South KOREA. (*National Research Council of Science & Technology/†Korea Basic Science Institute) A portion of research was supported by the National Research Foundation of Korea (NRF), (NRF-2017M2B2B1072374 and NRF-2017M2B2B1072404). This work was supported by Busan Metropolitan City, Korea, Grant No. PO2019057and Korea Basic Science Institute Grant C140320.

참고문헌

  1. I. Bardez, D. Caurant, F. Ribot, P. Loiseau, J. Dussossoy, F. Villain, N. Baffier, C. Fillet, Structural characterisations of rare earth-rich glasses for nuclear waste immobilisation, Mater. Res. Soc. Symp. Proc. 807 (2003), https://doi.org/10.1557/PROC-807-157.
  2. J. Colombani, The alkaline dissolution rate of calcite, J. Phys. Chem. Lett 7 (2016) 2376-2380, https://doi.org/10.1021/acs.jpclett.6b01055.
  3. J. Crum, V. Maio, J. McCloy, C. Scott, B. Riley, B. Benefiel, J. Vienna, K. Archibald, C. Rodriguez, V. Rutledge, Z. Zhu, J. Ryan, M. Olszta, Cold crucible induction melter studies for making glass ceramic waste forms: a feasibility assessment, J. Nucl. Mater. 444 (2014) 481-492, https://doi.org/10.1016/j.jnucmat.2013.10.029.
  4. J.V. Crum, L. Turo, B. Riley, M. Tang, A. Kossoy, Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals, J. Am. Ceram. Soc. 95 (2012) 1297-1303, https://doi.org/10.1111/j.1551-2916.2012.05089.x.
  5. A. Jarosikova, V. Ettler, M. Mihaljevic, B. Kribek, B. Mapani, The pH-dependent leaching behavior of slags from various stages of a copper smelting process: environmental implications, J. Environ. Manage. 187 (2017) 178-186, https://doi.org/10.1016/j.jenvman.2016.11.037.
  6. M. Kim, J. Heo, Vitusite glass-ceramics wasteforms for immobilization of lanthanide wastes generated by pyro-processing, Ceram. Int. 41 (2015) 6132-6136, https://doi.org/10.1016/j.ceramint.2015.01.035.
  7. M. Kim, J. Heo, Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing, J. Nucl. Mater. 467 (2015) 224-228, https://doi.org/10.1016/j.jnucmat.2015.09.040.
  8. M. Kim, C.L. Corkhill, N.C. Hyatt, J. Heo, Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides, Sci. Rep. 8 (2018) 5320, https://doi.org/10.1038/s41598-018-23665-z.
  9. M.A. Kim, J.H. Song, W. Um, N. Hyatt, S.-K. Sun, J. Heo, Structure analysis of vitusite glass-ceramic waste forms using extended x-ray absorption fine structures, Ceram. Int. 43 (2017) 4687-4691, https://doi.org/10.1016/j.ceramint.2016.12.129.
  10. N.A. Krishnan, S. Mangalathu, M.M. Smedskjaer, A. Tandia, H. Burton, M. Bauchy, Predicting the dissolution kinetics of silicate glasses using machine learning, J. Non-Cryst. Solids 487 (2018) 37-45, https://doi.org/10.1016/j.jnoncrysol.2018.02.023.
  11. I. Kumari, B. Kumar, A. Khanna, A review on UREX processes for nuclear spent fuel reprocessing, Nucl. Eng. Des. 358 (2020), 110410, https://doi.org/10.1016/j.nucengdes.2019.110410.
  12. W. Lee, M. Ojovan, M. Stennett, N. Hyatt, Immobilisation of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram. 105 (2006) 3-12, https://doi.org/10.1179/174367606X81669.
  13. J.S. McCloy, A. Goel, Glass-ceramics for nuclear-waste immobilization, MRS Bull. 42 (2017) 233-240, https://doi.org/10.1557/mrs.2017.8.
  14. S. Gin, P. Jollivet, M. Tribet, S. Peuget, S. Schuller, Radionuclides containment in nuclear glasses: an overview, Radiochim. Acta 105 (2017) 927-959, https://doi.org/10.1515/ract-2016-2658.
  15. B. Karmakar, K. Rademann, A.L. Stepanov, Glass Nanocomposites: Synthesis, Properties, and Applications, William Andrew, 2016.
  16. H. Toraya, A new method for quantitative phase analysis using X-ray powder diffraction data: direct derivation of weight fractions from observed integrated intensities and chemical compositions of the individual phases, J. Appl. Crystallogr. 49 (2016) 1508-1516, https://doi.org/10.1107/S1600576716010451.
  17. M.M. Smedskjaer, J.C. Mauro, R.E. Youngman, C.L. Hogue, M. Potuzak, Y. Yue, Topological principles of borosilicate glass chemistry, J. Phys. Chem. B 115 (2011) 12930-12946, https://doi.org/10.1021/jp208796b.
  18. J. Neeway, A. Abdelouas, B. Grambow, S. Schumacher, C. Martin, M. Kogawa, S. Utsunomiya, S. Gin, P. Frugier, Vapor hydration of SON68 glass from 90℃ to 200℃: a kinetic study and corrosion products investigation, J.non-cryst. Solid. 358 (2012) 2894-2905, https://doi.org/10.1016/j.jnoncrysol.2012.07.020.
  19. A. Abdelouas, Y.E. Mendili, A.A. Chaou, G. Karakurt, C. Hartnack, J.-F. Bardeau, T. Saito, H. Matsuzaki, A preliminary investigation of the ISG glass vapour hydration, Int. J. Appl. Glass Sci. 4 (2013) 307-316, https://doi.org/10.1111/ijag.12055|.
  20. S. Mohd Fadzil, P. Hrma, M.J. Schweiger, B.J. Riley, Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste, J. Nucl. Mater. 465 (2015) 657-663, https://doi.org/10.1016/j.jnucmat.2015.06.050.
  21. J.A. Peterson, J.V. Crum, B.J. Riley, R.M. Asmussen, J.J. Neeway, Synthesis and characterization of oxyapatite [Ca2Nd8(SiO4)6O2] and mixed-alkaline-earth powellite [(Ca,Sr,Ba)MoO4] for a glass-ceramic waste form, J. Nucl. Mater. 510 (2018) 623-634, https://doi.org/10.1016/j.jnucmat.2018.08.048.
  22. J.J. Neeway, R.M. Asmussen, E.M. McElroy, J.A. Peterson, B.J. Riley, J.V. Crum, Kinetics of oxyapatite [Ca2Nd8(SiO4)6O2] and powellite [(Ca,Sr,Ba)MoO4] dissolution in glass-ceramic nuclear waste forms in acidic, neutral, and alkaline conditions, J. Nucl. Mater. 515 (2019) 227-237, https://doi.org/10.1016/j.jnucmat.2018.12.043.
  23. N.Y. Mostafa, A.A. Shaltout, H. Omar, S.A. Abo-El-Enein, Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites, J. Alloys Compd. 467 (2009) 332-337, https://doi.org/10.1016/j.jallcom.2007.11.130.
  24. Z. Tian, J. Zhang, L. Zheng, W. Hu, X. Ren, Y. Lei, J. Wang, General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300 ℃, Corrosion Sci. 148 (2019) 281-292, https://doi.org/10.1016/j.corsci.2018.12.032.