Acknowledgement
This research was supported by a grant (21AUDP-C146352-04) from the Infrastructure and Transportation Technology Promotion Research Program, funded by the Ministry of Land, Infrastructure and Transport of the Korean Government, and by a grant (NRF-2020R1F1A1051051 and NRF-2021R1A6A1A03044977) from the Basic Science Research Program of the National Research Foundation of Korea, funded by the Ministry of Education.
References
- W. Wei, Y. Yuan, A. Igarashi, P. Tan, H. Iemura, H.P. Zhu, A generalized rate-dependent constitutive law for elastomeric bearings, Construct. Build. Mater. 106 (2016) 693-699. https://doi.org/10.1016/j.conbuildmat.2015.12.179
- G.P. Warn, K.L. Ryan, A review of seismic isolation for buildings: historical development and research needs, Buildings 2 (3) (2012) 300-325. https://doi.org/10.3390/buildings2030300
- H. Zhu, Z. Zhang, F. Zhou, H. Luo, X. Deng, Horizontal mechanical behavior of elastomeric bearings under eccentric vertical loading: full-scale tests and analytical modeling, Construct. Build. Mater. 125 (2016) 574-584. https://doi.org/10.1016/j.conbuildmat.2016.08.077
- P. Narjabadifam, P.L.Y. Tiong, R. Mousavi-Alanjagh, Effects of inherent structural characteristics on seismic performances of aseismically base-isolated buildings, Iran. J. Sci. Technol. Trans. Civil Eng. 44 (2019) 1385-1401. https://doi.org/10.1007/s40996-019-00317-4
- F. Naeim, J.M. Kelly, Design of Seismic Isolated Structures: from Theory to Practice, first ed., John Wiley and Sons, Hoboken, NJ, USA, 1999.
- D. Losanno, I.E.M. Sierra, M. Spizzuoco, J. Marulanda, P. Thomson, Experimental assessment and analytical modeling of novel fiber-reinforced isolators in unbounded configuration, Compos. Struct. 212 (2019) 66-82. https://doi.org/10.1016/j.compstruct.2019.01.026
- W.H. Robinson, Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes, Earthq. Eng. Struct. Dynam. 10 (1982) 593-604. https://doi.org/10.1002/eqe.4290100408
- N. Fallah, G. Zamiri, Multi-objective optimal design of sliding base isolation using genetic algorithm, Sci. Iran. 20 (1) (2013) 87-96. https://doi.org/10.1016/j.scient.2012.11.004
- T. Nishi, S. Suzuki, M. Aoki, T. Sawada, S. Fukuda, International investigation of shear displacement capacity of various elastomeric seismic-protection isolators for buildings, J. Rubber Res. 22 (2019) 33-41. https://doi.org/10.1007/s42464-019-00006-x
- E. Tubaldi, S.A. Mittoulis, H. Ahmadi, A. Muhr, A parametric study on the axial behavior of elastomeric isolators in multi-span bridges subjected to horizontal seismic excitations, Bull. Earthq. Eng. 14 (2016) 1285-1310. https://doi.org/10.1007/s10518-016-9876-9
- M. Yamamoto, S. Minewaki, H. Yoneda, M. Higashino, Nonlinear behavior of high-damping rubber bearings under horizontal bidirectional loading: full-scale tests and analytical modeling, Earthq. Eng. Struct. Dynam. 41 (13) (2012) 1845-1860. https://doi.org/10.1002/eqe.2161
- American Society of Civil Engineers, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineering, Virginia, USA, 2017. ASCE/SEI 7-16.
- International Organization for Standardization, Elastomeric Seismic-Protection Isolatorsd Part 1: Test Methods, ISO 22762-1, 2018 (Geneva, Switzerland).
- P.S. Balaji, L. Moussa, M.E. Rahman, L.H. Ho, An analytical study on the static vertical stiffness of wire rope isolators, J. Mech. Sci. Technol. 30 (1) (2016a) 287-295. https://doi.org/10.1007/s12206-015-1232-5
- P.S. Balaji, L. Moussa, M.E. Rahman, L.H. Ho, Static lateral stiffness of wire rope isolators, Mech. Base. Des. Struct. Mach. 44 (4) (2016b) 462-475. https://doi.org/10.1080/15397734.2015.1116996
- W.G. Liu, W.F. He, D.M. Feng, Q.R. Yang, Vertical stiffness and deformation analysis models of rubber isolators in compression and compression-shear states, J. Eng. Mech. 35 (9) (2009) 945-952.
- T.V. Ngo, A. Dutta, S.K. Deb, Evaluation of horizontal stiffness of fibre-reinforced elastomeric isolators, Earthq. Eng. Struct. Dynam. 46 (11) (2017) 1747-1767. https://doi.org/10.1002/eqe.2879
- N. Murota, T. Mori, An experimental study on scale effect in dynamic shear properties of high-damping rubber bearings, Front. Built Environ. 6 (2020) 37, https://doi.org/10.3389/fbuil.2020.00037.
- V. Gonca, S. Polukoshko, Buckling stability of multilayered rubber-metal vibration isolator, Vibroeng. Procedia 3 (2014) 319-325.
- K.N.G. Fuller, J. Gough, H.R. Ahmadi, Predicting the response of high damping rubber bearings using simplified models and finite element analysis, in: Proceedings of the International Atomic Energy Agency Meeting, vol. 50, also for Publication 1580 TARRC, Rubber Developments, St. Petersburg, Russia, 1996. No. 1/2, 1997.
- A. Purgstaller, P.Q. Gallo, S. Pampanin, K. Bergmeister, Seismic demands on nonstructural components anchored to concrete accounting for structure-fastener-nonstructural interaction (SFNI), Earthq. Eng. Struct. Dynam. 49 (6) (2020) 589-606. https://doi.org/10.1002/eqe.3255