DOI QR코드

DOI QR Code

The effect of UV-C irradiation and EDTA on the uptake of Co2+ by antimony oxide in the presence and absence of competing cations Ca2+ and Ni2+

  • Malinen, Leena (Department of Chemistry, Radiochemistry Unit, University of Helsinki) ;
  • Repo, Eveliina (Department of Separation Science, School of Engineering Science, LUT University) ;
  • Harjula, Risto (Department of Chemistry, Radiochemistry Unit, University of Helsinki) ;
  • Huittinen, Nina (Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology)
  • 투고 : 2021.06.19
  • 심사 : 2021.08.02
  • 발행 : 2022.02.25

초록

In nuclear power plants and other nuclear facilities the removal of cobalt from radioactive liquid waste is needed to reduce the radioactivity concentration in effluents. In liquid wastes containing strong organic complexing agents such as EDTA cobalt removal can be problematic due to the high stability of the Co-EDTA complex. In this study, the removal of cobalt from NaNO3 solutions using antimony oxide (Sb2O3) synthesized from potassium hexahydroxoantimonate was investigated in the absence and presence of EDTA. The uptake studies on the ion exchange material were conducted both in the dark (absence of UV-light) and under UV-C irradiation. Ca2+ or Ni2+ were included in the experiments as competing cations to test the selectivity of the ion exchanger. Results show that UV-C irradiation noticeably enhances the cobalt sorption efficiency on the antimony oxide. It was shown that nickel decreased the sorption of cobalt to a higher extent than calcium. Finally, the sorption data collected for Co2+ on antimony oxide was modeled using six different isotherm models. The Sips model was found to be the most suitable model to describe the sorption process. The Dubinin-Radushkevich model was further used to calculate the adsorption energy, which was found to be 6.2 kJ mol-1.

키워드

과제정보

This work was supported by the Jenny and Antti Wihuri Foundation [2015] and the Fortum Foundation [201500073, 2016]. Anna-Elina Pasi, M. Sc. and Taneli Iso-Markku, M. Sc., are thanked for the assistance with the laboratory experiments. Liisa Puro, Ph.D., is thanked for the surface area and pore size analysis. Prof. Jukka Lehto is thanked for constructive discussions throughout the course of the project.

참고문헌

  1. The Lund/LBNL nuclear data search, 28th April, 2019, www.nucleardata.nuclear.lu.se/toi/.
  2. W.D. Samuels, D.M. Camaioni, H. Babad, Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex. In: Proceedings of Waste Management'94: Working towards a Cleaner Environment, Tucson, AZ, United States, 27 Feb - 3 Mar 1994.
  3. J.S. Fritz, G.H. Schenk, in: Quantitative Analytical Chemistry, fifth ed., Prentice Hall, New Jersey, USA, 1987.
  4. H.G. Langer, Solid complexes with tetravalent metal ions and ethylenediamine tetra-acetic acid (EDTA), J. Inorg. Nucl. Chem. 26 (1964) 59-72. https://doi.org/10.1016/0022-1902(64)80233-5
  5. F.G. Kari, W. Giger, Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt, Environ. Sci. Technol. 29 (1995) 2814-2827. https://doi.org/10.1021/es00011a018
  6. S. Metsarinne, T. Tuhkanen, R. Aksela, Photodegradation of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range, Chemosphere 45 (2001) 949-955. https://doi.org/10.1016/S0045-6535(01)00022-4
  7. H.B. Lockhart, R.V. Blakeley, Aerobic photodegradation of Fe(III)-(ethylenedinitrilo)tetraacetate (ferric EDTA), Environ. Sci. Technol. 9 (1975) 1035-1038. https://doi.org/10.1021/es60110a009
  8. L.K. Malinen, R. Koivula, R. Harjula, Removal of radiocobalt from EDTA-complexes using oxidation and selective ion exchange, Water Sci. Technol. 60 (2009) 1097-1101. https://doi.org/10.2166/wst.2009.458
  9. K. Rekab, C. Lepeytre, F. Goettmann, M. Dunand, C. Guillard, J.-M. Herrmann, Degradation of a cobalt(II)-EDTA complex by photocatalysis and H2O2/UV-C, Application to nuclear wastes containing 60Co, J. Radioanal. Nucl. Chem. 303 (2015) 131-137. https://doi.org/10.1007/s10967-014-3311-y
  10. R. Harjula, J. Lehto, A. Paajanen, L. Brodkin, E. Tusa, Testing of highly selective CoTreat ion exchange media for the removal of radiocobalt and other activated corrosion product nuclides from NPP waste waters. In: Proceedings of Waste Management, Tucson, AZ, United States, 28 Feb - 4 Mar 1999.
  11. L. Malinen, R. Koivula, R. Harjula, Removal of cobalt from aqueous solution containing EDTA under UV-C irradiation by antimony oxide, Radiochim. Acta 104 (6) (2016) 415-422. https://doi.org/10.1515/ract-2015-2501
  12. A.A. Khan, M.M. Alam, New and novel organic-inorganic type crystalline polypyrrolel/polyantimonic acid' composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg(II) ion-selective membrane electrode, An. Chim. Acta 504 (2004) 253-264. https://doi.org/10.1016/j.aca.2003.10.054
  13. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherms systems, Chem. Eng. J. 150 (1) (2010) 2-10.
  14. S.J. Allen, G. McKay, J.F. Porter, Adsorption isotherm model for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2) (2004) 322-333. https://doi.org/10.1016/j.jcis.2004.08.078
  15. A.B. Perez-Marin, V. Meseguer Zapata, J.F. Ortu no, M. Aguilar, J. Saez, M. Llorens, Removal of cadmium from aqueous solutions by adsorption onto orange waste, J. Hazard Mater. 139 (1) (2007) 122-131. https://doi.org/10.1016/j.jhazmat.2006.06.008
  16. K. Vijayraghavan, T.V.N. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models, J. Hazard Mater. 133 (1) (2006) 304-308. https://doi.org/10.1016/j.jhazmat.2005.10.016
  17. K.G. Karthikeyan, M.A. Tshabalala, D. Wang, M. Kalbasi, Solution chemistry effects on orthophosphate adsorption by cationized wood residues, Environ. Sci. Technol. 38 (2004) 904-911. https://doi.org/10.1021/es034819z
  18. M. Abe, T. Itoh, Synthetic inorganic ion exchange materials XXV. Change in the ion-exchange selectivity by thermal treatment of crystalline antimonic(V) acid toward alkali metal ions, J. Inorg. Nucl. Chem. 42 (1980) 1641-1644. https://doi.org/10.1016/0022-1902(80)80330-7
  19. A.V. Delgado, F. Gonzalez-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena, Pure Appl. Chem. 77 (10) (2005) 1753-1805. https://doi.org/10.1351/pac200577101753
  20. M. Abe, Oxides and hydrous oxides of multivalent metals as inorganic ion exchangers, in: A. Clearfield A (Ed.), Inorganic Ion Exchange Materials, first ed., CRC Press, Florida, 1982, pp. 161-246.
  21. M. Abe, Ion exchange selectivities of crystalline antimonic acid, in: P.A. Williams, M.J. Hudson (Eds.), Recent Developments of Ion Exchange: Proceedings of the International Conference on Ion Exchange Processes (IONEX '87): the North East Wales Institute of Higher Education, Elsevier Applied Science, UK, London and New York, 1987, pp. 277-290.
  22. L.H. Baetsle, D. Huys, Structure and ion exchange characteristics of polyantimonic acid, J. Inorg. Nucl. Chem. 30 (1968) 639-649. https://doi.org/10.1016/0022-1902(68)80489-0
  23. M. Abe, K. Sudoh, Synthetic inorganic ion-exchange materials. XXIII. Ion-exchange equilibria of transition metals and hydrogen ions on crystalline antimonic(V) acid, J. Inorg. Nucl. Chem. 42 (1980) 1051-1055. https://doi.org/10.1016/0022-1902(80)80399-X
  24. R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. B25 (1969) 925-946.
  25. J.P. Gustafsson, Visual Minteq 3.0, a free equilibrium speciation model, accessed 28th April, 2019), http://vminteq.lwr.kth.se/.
  26. A.E. Martell, R.M. Smith, Critical Stability Constants, 3, Plenum, New York, 1977.
  27. J.M. Zachara, S. Smith, J.K. Fredrickson, The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA2- to goethite and a subsurface sediment, Geochem. Cosmochim. Acta 64 (8) (2000) 1345-1362. https://doi.org/10.1016/S0016-7037(99)00427-5
  28. D.G. Kinniburgh, General purpose adsorption isotherms, Environ. Sci. Technol. 20 (1986) 895-904. https://doi.org/10.1021/es00151a008
  29. B.S. Krishna, D.S.R. Murty, B.S. Prakash Jai, Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite clay, J. Colloid Interface Sci. 229 (2000) 230-236. https://doi.org/10.1006/jcis.2000.7015
  30. M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics, J. Hazard Mater. 141 (2007) 77-85. https://doi.org/10.1016/j.jhazmat.2006.06.095
  31. V.J. Inglezakis, A.A. Zorpas, Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems, Desal. Water Treat. 39 (2012) 149-157. https://doi.org/10.1080/19443994.2012.669169
  32. M. Abe, K. Kasai, Synthetic inorganic ion-exchange materials. XXII. Distribution coefficients and possible separation of transition metals on crystalline antimonic(V) acid as a cation exchanger, Separ. Sci. Technol. 14 (1979) 895-907. https://doi.org/10.1080/01496397908058100
  33. J. Chen, Z. Chen, X. Zhang, X. Li, L. Yu, D. Li, Antimony oxide hydrate (Sb2O5$3H2O) as a simple and high efficient photocatalyst for oxidation of benzene, Appl. Catal. B Environ. 210 (2017) 379-385. https://doi.org/10.1016/j.apcatb.2017.04.004
  34. D.R. Eaton, S.R. Suart, Electron spin resonance studies of the photooxidation and reduction of cobalt complexes, J. Phys. Chem. 72 (2) (1968) 400-405. https://doi.org/10.1021/j100848a003
  35. G. Wang, Y. Ling, X. Lu, T. Zhai, F. Qian, Y. Tong, Y. Li, A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation, Nanoscale 5 (2013) 4129-4133. https://doi.org/10.1039/c3nr00569k
  36. B. Beverskog, I. Puigdomenech, Revised Pourbaix diagrams for nickel at 25-300℃, Corrosion Sci. 39 (1997) 969-980. https://doi.org/10.1016/S0010-938X(97)00002-4