과제정보
This work was supported by the Jenny and Antti Wihuri Foundation [2015] and the Fortum Foundation [201500073, 2016]. Anna-Elina Pasi, M. Sc. and Taneli Iso-Markku, M. Sc., are thanked for the assistance with the laboratory experiments. Liisa Puro, Ph.D., is thanked for the surface area and pore size analysis. Prof. Jukka Lehto is thanked for constructive discussions throughout the course of the project.
참고문헌
- The Lund/LBNL nuclear data search, 28th April, 2019, www.nucleardata.nuclear.lu.se/toi/.
- W.D. Samuels, D.M. Camaioni, H. Babad, Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex. In: Proceedings of Waste Management'94: Working towards a Cleaner Environment, Tucson, AZ, United States, 27 Feb - 3 Mar 1994.
- J.S. Fritz, G.H. Schenk, in: Quantitative Analytical Chemistry, fifth ed., Prentice Hall, New Jersey, USA, 1987.
- H.G. Langer, Solid complexes with tetravalent metal ions and ethylenediamine tetra-acetic acid (EDTA), J. Inorg. Nucl. Chem. 26 (1964) 59-72. https://doi.org/10.1016/0022-1902(64)80233-5
- F.G. Kari, W. Giger, Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt, Environ. Sci. Technol. 29 (1995) 2814-2827. https://doi.org/10.1021/es00011a018
- S. Metsarinne, T. Tuhkanen, R. Aksela, Photodegradation of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range, Chemosphere 45 (2001) 949-955. https://doi.org/10.1016/S0045-6535(01)00022-4
- H.B. Lockhart, R.V. Blakeley, Aerobic photodegradation of Fe(III)-(ethylenedinitrilo)tetraacetate (ferric EDTA), Environ. Sci. Technol. 9 (1975) 1035-1038. https://doi.org/10.1021/es60110a009
- L.K. Malinen, R. Koivula, R. Harjula, Removal of radiocobalt from EDTA-complexes using oxidation and selective ion exchange, Water Sci. Technol. 60 (2009) 1097-1101. https://doi.org/10.2166/wst.2009.458
- K. Rekab, C. Lepeytre, F. Goettmann, M. Dunand, C. Guillard, J.-M. Herrmann, Degradation of a cobalt(II)-EDTA complex by photocatalysis and H2O2/UV-C, Application to nuclear wastes containing 60Co, J. Radioanal. Nucl. Chem. 303 (2015) 131-137. https://doi.org/10.1007/s10967-014-3311-y
- R. Harjula, J. Lehto, A. Paajanen, L. Brodkin, E. Tusa, Testing of highly selective CoTreat ion exchange media for the removal of radiocobalt and other activated corrosion product nuclides from NPP waste waters. In: Proceedings of Waste Management, Tucson, AZ, United States, 28 Feb - 4 Mar 1999.
- L. Malinen, R. Koivula, R. Harjula, Removal of cobalt from aqueous solution containing EDTA under UV-C irradiation by antimony oxide, Radiochim. Acta 104 (6) (2016) 415-422. https://doi.org/10.1515/ract-2015-2501
- A.A. Khan, M.M. Alam, New and novel organic-inorganic type crystalline polypyrrolel/polyantimonic acid' composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg(II) ion-selective membrane electrode, An. Chim. Acta 504 (2004) 253-264. https://doi.org/10.1016/j.aca.2003.10.054
- K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherms systems, Chem. Eng. J. 150 (1) (2010) 2-10.
- S.J. Allen, G. McKay, J.F. Porter, Adsorption isotherm model for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2) (2004) 322-333. https://doi.org/10.1016/j.jcis.2004.08.078
- A.B. Perez-Marin, V. Meseguer Zapata, J.F. Ortu no, M. Aguilar, J. Saez, M. Llorens, Removal of cadmium from aqueous solutions by adsorption onto orange waste, J. Hazard Mater. 139 (1) (2007) 122-131. https://doi.org/10.1016/j.jhazmat.2006.06.008
- K. Vijayraghavan, T.V.N. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models, J. Hazard Mater. 133 (1) (2006) 304-308. https://doi.org/10.1016/j.jhazmat.2005.10.016
- K.G. Karthikeyan, M.A. Tshabalala, D. Wang, M. Kalbasi, Solution chemistry effects on orthophosphate adsorption by cationized wood residues, Environ. Sci. Technol. 38 (2004) 904-911. https://doi.org/10.1021/es034819z
- M. Abe, T. Itoh, Synthetic inorganic ion exchange materials XXV. Change in the ion-exchange selectivity by thermal treatment of crystalline antimonic(V) acid toward alkali metal ions, J. Inorg. Nucl. Chem. 42 (1980) 1641-1644. https://doi.org/10.1016/0022-1902(80)80330-7
- A.V. Delgado, F. Gonzalez-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena, Pure Appl. Chem. 77 (10) (2005) 1753-1805. https://doi.org/10.1351/pac200577101753
- M. Abe, Oxides and hydrous oxides of multivalent metals as inorganic ion exchangers, in: A. Clearfield A (Ed.), Inorganic Ion Exchange Materials, first ed., CRC Press, Florida, 1982, pp. 161-246.
- M. Abe, Ion exchange selectivities of crystalline antimonic acid, in: P.A. Williams, M.J. Hudson (Eds.), Recent Developments of Ion Exchange: Proceedings of the International Conference on Ion Exchange Processes (IONEX '87): the North East Wales Institute of Higher Education, Elsevier Applied Science, UK, London and New York, 1987, pp. 277-290.
- L.H. Baetsle, D. Huys, Structure and ion exchange characteristics of polyantimonic acid, J. Inorg. Nucl. Chem. 30 (1968) 639-649. https://doi.org/10.1016/0022-1902(68)80489-0
- M. Abe, K. Sudoh, Synthetic inorganic ion-exchange materials. XXIII. Ion-exchange equilibria of transition metals and hydrogen ions on crystalline antimonic(V) acid, J. Inorg. Nucl. Chem. 42 (1980) 1051-1055. https://doi.org/10.1016/0022-1902(80)80399-X
- R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. B25 (1969) 925-946.
- J.P. Gustafsson, Visual Minteq 3.0, a free equilibrium speciation model, accessed 28th April, 2019), http://vminteq.lwr.kth.se/.
- A.E. Martell, R.M. Smith, Critical Stability Constants, 3, Plenum, New York, 1977.
- J.M. Zachara, S. Smith, J.K. Fredrickson, The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA2- to goethite and a subsurface sediment, Geochem. Cosmochim. Acta 64 (8) (2000) 1345-1362. https://doi.org/10.1016/S0016-7037(99)00427-5
- D.G. Kinniburgh, General purpose adsorption isotherms, Environ. Sci. Technol. 20 (1986) 895-904. https://doi.org/10.1021/es00151a008
- B.S. Krishna, D.S.R. Murty, B.S. Prakash Jai, Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite clay, J. Colloid Interface Sci. 229 (2000) 230-236. https://doi.org/10.1006/jcis.2000.7015
- M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics, J. Hazard Mater. 141 (2007) 77-85. https://doi.org/10.1016/j.jhazmat.2006.06.095
- V.J. Inglezakis, A.A. Zorpas, Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems, Desal. Water Treat. 39 (2012) 149-157. https://doi.org/10.1080/19443994.2012.669169
- M. Abe, K. Kasai, Synthetic inorganic ion-exchange materials. XXII. Distribution coefficients and possible separation of transition metals on crystalline antimonic(V) acid as a cation exchanger, Separ. Sci. Technol. 14 (1979) 895-907. https://doi.org/10.1080/01496397908058100
- J. Chen, Z. Chen, X. Zhang, X. Li, L. Yu, D. Li, Antimony oxide hydrate (Sb2O5$3H2O) as a simple and high efficient photocatalyst for oxidation of benzene, Appl. Catal. B Environ. 210 (2017) 379-385. https://doi.org/10.1016/j.apcatb.2017.04.004
- D.R. Eaton, S.R. Suart, Electron spin resonance studies of the photooxidation and reduction of cobalt complexes, J. Phys. Chem. 72 (2) (1968) 400-405. https://doi.org/10.1021/j100848a003
- G. Wang, Y. Ling, X. Lu, T. Zhai, F. Qian, Y. Tong, Y. Li, A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation, Nanoscale 5 (2013) 4129-4133. https://doi.org/10.1039/c3nr00569k
- B. Beverskog, I. Puigdomenech, Revised Pourbaix diagrams for nickel at 25-300℃, Corrosion Sci. 39 (1997) 969-980. https://doi.org/10.1016/S0010-938X(97)00002-4