DOI QR코드

DOI QR Code

Organ dose conversion coefficients in CT scans for Korean adult males and females

  • Lee, Choonsik (Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health) ;
  • Won, Tristan (Winston Churchill High School) ;
  • Yeom, Yeon Soo (Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health) ;
  • Griffin, Keith (Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health) ;
  • Lee, Choonik (Department of Radiation Oncology, University of Michigan) ;
  • Kim, Kwang Pyo (Department of Nuclear Engineering, Kyung Hee University)
  • Received : 2021.02.23
  • Accepted : 2021.08.04
  • Published : 2022.02.25

Abstract

Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.

Keywords

Acknowledgement

This research was funded by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.

References

  1. M.S. Pearce, J.A. Salotti, M.P. Little, K. McHugh, C. Lee, K.P. Kim, N.L. Howe, C.M. Ronckers, P. Rajaraman, A.W. Sir Craft, L. Parker, A. Berrington de Gonzalez, Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study, Lancet 380 (2012) 499-505, https://doi.org/10.1016/S0140-6736(12)60815-0.
  2. J.D. Mathews, A.V. Forsythe, Z. Brady, M.W. Butler, S.K. Goergen, G.B. Byrnes, G.G. Giles, A.B. Wallace, P.R. Anderson, T.A. Guiver, P. McGale, T.M. Cain, J.G. Dowty, A.C. Bickerstaffe, S.C. Darby, Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians, Br. Med. J. 346 (2013) 2360-2360, https://doi.org/10.1136/bmj.f2360.
  3. J.M. Meulepas, C.M. Ronckers, A.M.J.B. Smets, R.A.J. Nievelstein, P. Gradowska, C. Lee, A. Jahnen, M. van Straten, M.-C.Y. de Wit, B. Zonnenberg, W.M. Klein, J.H. Merks, O. Visser, F.E. van Leeuwen, M. Hauptmann, Radiation exposure from pediatric CT scans and subsequent cancer risk in The Netherlands, J. Natl. Cancer Inst. 111 (2019) 256-263, https://doi.org/10.1093/jnci/djy104.
  4. G. Stamm, H.D. Nagel, CT-expo-a novel program for dose evaluation in CT, ROFO. Fortschr. Geb. Rontgenstr. Nuklearmed. 174 (2002) 1570-1576, https://doi.org/10.1055/s-2002-35937.
  5. ImPACT, ImPACT CT Patient Dosimetry Calculator, 2011. London, UK, http://www.impactscan.org/ctdosimetry.htm.
  6. C. Lee, K.P. Kim, W.E. Bolch, B.E. Moroz, Les Folio, NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans, J. Radiol. Prot. 35 (2015) 891-909, https://doi.org/10.1088/0952-4746/35/4/891.
  7. X. Li, E. Samei, W.P. Segars, G.M. Sturgeon, J.G. Colsher, D.P. Frush, Patient-specific dose estimation for pediatric chest CT, Med. Phys. 35 (2008) 5821-5828, https://doi.org/10.1118/1.3026593.
  8. C. Lee, J. Lee, Korean adult male voxel model KORMAN segmented from magnetic resonance images, Med. Phys. 31 (2004) 1017-1022. https://doi.org/10.1118/1.1689013
  9. C. Lee, Construction of Korean Adult Voxel Phantoms for Radiation Dosimetry and Their Applications, Hanyang University, 2002.
  10. C. Lee, S. Park, J.K. Lee, Development of the two Korean adult tomographic models, Med. Phys. 33 (2006) 380-390. https://doi.org/10.1118/1.2161405
  11. A. Lee, W.Y. Choi, M.S. Chung, H. Choi, J. Choi, Development of Korean male body model for computational dosimetry, ETRI J 28 (2006) 107-110. https://doi.org/10.4218/etrij.06.0205.0024
  12. A.K. Lee, J.K. Byun, J.S. Park, H.D. Choi, J. Yun, Development of 7-year-old Korean child model for computational dosimetry, ETRI J 31 (2009) 237-239. https://doi.org/10.4218/etrij.09.0208.0342
  13. C.H. Kim, S.H. Choi, J.H. Jeong, C. Lee, M.S. Chung, HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver, Phys. Med. Biol. 53 (2008) 4093-4106, https://doi.org/10.1088/0031-9155/53/15/006.
  14. Y.S. Yeom, J.H. Jeong, C.H. Kim, M.C. Han, B.K. Ham, K.W. Cho, S.B. Hwang, HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver, Phys. Med. Biol. 59 (2014) 3969-3984, https://doi.org/10.1088/0031-9155/59/14/3969.
  15. T. Won, A.-K. Lee, H. Choi, C. Lee, Radiation dose from computed tomography scans for Korean pediatric and adult patients, J. Radiat. Prot. Res. (2021), https://doi.org/10.14407/jrpr.2021.00010.
  16. ICRP, Basic anatomical and physiological data for use in radiological protection : reference values, ICRP Publ. 89 Ann ICRP. 32 (2002) 1-277.
  17. D.J. Long, C. Lee, C. Tien, R. Fisher, M.R. Hoerner, D. Hintenlang, W.E. Bolch, Monte Carlo simulations of adult and pediatric computed tomography exams: validation studies of organ doses with physical phantoms, Med. Phys. 40 (2013) 13901, https://doi.org/10.1118/1.4771934.
  18. J. Dabin, A. Mencarelli, D. McMillan, A. Romanyukha, L. Struelens, C. Lee, Validation of calculation algorithms for organ doses in CT by measurements on a 5 year old paediatric phantom, Phys. Med. Biol. 61 (2016) 4168-4182, https://doi.org/10.1088/0031-9155/61/11/4168.
  19. L. Giansante, J.C. Martins, D.Y. Nersissian, K.C. Kiers, F.U. Kay, M.V.Y. Sawamura, C. Lee, E.M.M.S. Gebrim, P.R. Costa, Organ doses evaluation for chest computed tomography procedures with TL dosimeters: comparison with Monte Carlo simulations, J. Appl. Clin. Med. Phys. 20 (2019) 308-320, https://doi.org/10.1002/acm2.12505.
  20. D.B. Pelowitz, MCNPX User's Manual Version 2.7.0, Los Alamos National Laboratory, 2011.
  21. ICRP, Paediatric Reference Computational Phantoms, ICRP Publ. 143 Ann ICRP, 2020.
  22. ICRP, Adult Reference Computational Phantoms, ICRP Publ, 2009, pp. 1-166, 110 Ann ICRP. 39.
  23. J.M. Boone, K.J. Strauss, D.D. Cody, C.H. McCollough, M.F. McNitt-Gray, T.L. Toth, Size-specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations, AAPM, 2011. https://www.aapm.org/pubs/reports/RPT_204.pdf.
  24. K.T. Griffin, T.A. Cuthbert, S.A. Dewji, C. Lee, Stylized versus voxel phantoms: a juxtaposition of organ depth distributions, Phys. Med. Biol. 65 (2020), 065007, https://doi.org/10.1088/1361-6560/ab7686.
  25. Ministry of Food and Drug Safety, National Survey of Radiation Dose of Computed Tomography in Korea, 2008.
  26. Ministry of Food and Drug Safety, Establishment of Diagnostic Reference Level in Pediatric Computed Tomography in Korea, 2012.
  27. Korea Centers for Disease Control and Prevention, Diagnostic Reference Levels of Computed Tomography, national survey, 2017.
  28. Y.S. Yeom, D. Villoing, N. Greenstein, C.M. Kitahara, L.R. Folio, C.H. Kim, C. Lee, Investigation OF the influence OF thyroid location ON iodine-131 S values, Radiat. Prot. Dosimetry. 189 (2020) 163-171, https://doi.org/10.1093/rpd/ncaa027.