DOI QR코드

DOI QR Code

Fractional radioactive decay law and Bateman equations

  • Cruz-Lopez, C.A. (Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa) ;
  • Espinosa-Paredes, G. (Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa)
  • Received : 2021.05.17
  • Accepted : 2021.07.16
  • Published : 2022.01.25

Abstract

The aim of this work is to develop the fractional Bateman equations, which can model memory effects in successive isotopes transformations. Such memory effects have been previously reported in the alpha decay, which exhibits a non-Markovian behavior. Since there are radioactive decay series with consecutive alpha decays, it is convenient to include the mentioned memory effects, developing the fractional Bateman Equations, which can reproduce the standard ones when the fractional order is equal to one. The proposed fractional model preserves the mathematical shape and the symmetry of the standard equations, being the only difference the presence of the Mittag-Leffler function, instead of the exponential one. This last is a very important result, because allows the implementation of the proposed fractional model in burnup and activation codes in a straightforward way. Numerical experiments show that the proposed equations predict high decay rates for small time values, in comparison with the standard equations, which have high decay rates for large times. This work represents a novelty approach to the theory of successive transformations, and opens the possibility to study properties of the Bateman equation from a fractional approach.

Keywords

Acknowledgement

The authors acknowledge the financial support received from the Mexican Secretariat of Public Education, SEP, under the project 12513606, entitled: Study and modelling of transmutation and diffusion phenomena in nuclear reactors using fractional calculus theory, by which the present development was possible.

References

  1. P. Radvanyi, J. Villain, The discovery of radioactivite, Compt. Rendus Phys. 18 (2017) 544-550. https://doi.org/10.1016/j.crhy.2017.10.008
  2. H. Bateman, The solution of a system of differential equations occurring in the theory of radio-active transformations, in: Proceedings of the Cambridge Philosophical Society, Mathematical and Physics Sciences 15, 1910, pp. 423-427.
  3. C. Anastopoulos, Decays of unstable quantum systems, Int. J. Theor. Phys. 58 (2019) 890-930. https://doi.org/10.1007/s10773-018-3984-z
  4. A.B. Calik, H. Ertik, B. Oder, H. Sirin, A fractional calculus approach to investigate the alpha decay processes, Int. J. Mod. Phys. E 22 (2013) 1350049 1-135004913. https://doi.org/10.1142/S0218301313500493
  5. K. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order, Academic Press Inc., New York and London, 1974.
  6. K.M. Owolabi, D. Baleanu, Emergent patterns in diffusive turing-like systems with fractional-order operator, Neural Comput. Appl. (2021).
  7. A. Traore, N. Sene, Model of economic growth in the context of fractional derivative, Alexandria Eng. J. 59 (2020) 4843-4850. https://doi.org/10.1016/j.aej.2020.08.047
  8. S.K. Panda, C. Ravichandran, B. Hazarika, Results on system of Atangana-Baleanu fractional order Willis Aneurysm and nonlinear singularly perturbed boundary value problems, Chaos, Solit. Fractals 142 (2021) 110390 1-14. https://doi.org/10.1016/j.chaos.2020.110390
  9. F.M. Khan, Z.U. Khan, Y. Lv, A. Yusuf, A. Din, Investigating of fractional order dengue epidemic model with ABC operator, Result. Phys. 24 (2021) 104075 1-10407511. https://doi.org/10.1016/j.rinp.2021.104075
  10. A. Kumar, H.V.S. Chauhan, C. Ravichandran, K.S. Nisar, Existence of solutions of non-autonomous fractional differential equations with integral impulse condition, Adv. Differ. Equ. (2020) 434.
  11. G.S. Teodoro, J.A.T. Machado, E.C. de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys. 388 (2019) 195-208. https://doi.org/10.1016/j.jcp.2019.03.008
  12. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, 198, Slovak Republic, 1999.
  13. K.M. Owolabi, A. Atangana, Numerical Methods for Fractional Differentiation, Springer, 2019.
  14. C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos, Solit. Fractals 125 (2019) 194-200. https://doi.org/10.1016/j.chaos.2019.05.014
  15. L. Kexue, P. Jigen, Laplace transform and fractional differential equations, Appl. Math. Lett. 24 (2011) 2019-2023. https://doi.org/10.1016/j.aml.2011.05.035
  16. F. Mainardi, Why the Mittag-Leffler function can Be considered the queen function on the fractional calculus? MDPI Entropy 22 (2020) 1359 1-135929. https://doi.org/10.3390/e22121359
  17. P. Agarwal, S.V. Rogosin, J.J. Trujillo, Certain fractional integral operators and the generalized multi-index Leffler functions, in: Proceedings - Mathematical Sciences 125, 2015, pp. 291-306. https://doi.org/10.1007/s12044-015-0243-6
  18. K. Diethelm, The Analysis of Fractional Differential Equations: an Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin Heidelberg, 2010.
  19. V.E. Tarasov, Generalized memory: fractional calculus approach, MDPI Fract. Fract. 2 (2018) 23 1-17. https://doi.org/10.3390/fractalfract2040023
  20. R.B. Nelsen, Consequences of the memoryless property for random variables, Am. Math. Mon. 94 (1987) 981-984. https://doi.org/10.2307/2322607
  21. R.V. Meghreblian, D.K. Holmes, Reactor Analysis, McGraw-Hill Book Company, 1960.
  22. W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, John Wiley & Sons, Inc., 1991.
  23. H.F. Zhang, G. Royer, α particle preformation in heavy nuclei and penetration probability, Phys. Rev. C 77 (2008), 054318 1-7. https://doi.org/10.1103/PhysRevC.77.054318
  24. Z. Vukadin, Analytical method for solving depletion equations, Atomkernenergie 27 (1998) 30-34.
  25. P.P.H. Wilson, ALARA: Analytic and Laplacian Adaptive Radioactivity Analysis, Doctoral dissertation, Fusion Technology Institute, University of Wisconsin, Madison Wisconsin. USA, 1999.
  26. R. Gorenflo, A.A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, second ed., Springer, Germany, 2014.
  27. H. Irmak, P. Agarwal, Some Comprehensive inequalities consisting of Mittag-Leffler type functions in the complex plane, Math. Model Nat. Phenom. 12 (2017) 3 65-71. https://doi.org/10.1051/mmnp/201712306
  28. S. Jain, P. Agarwal, A. Kilicman, Pathway fractional integral operator associated with 3m-parametric Mittag-Leffler functions, Int. J. Appl. Comput. Sci. Math. 4 (2018) 115 1-11517.
  29. A. Fernandez, I. Husain, Modified Mittag-Leffler functions with applications in complex formulae for fractional calculus, MDPI Fract. Fract. 4 (2020) 4511-4515.
  30. C.A. Cruz Lopez, J.L. Francois, Two alternatives approaches to the solution of cyclic chains in transmutation and decay problems, Comput. Phys. Commun. 254 (2020) 107225 1-10722516. https://doi.org/10.1016/j.cpc.2020.107225
  31. K.M. Owolabi, Numerical approach to chaotic pattern formation in diffusive predator-prey system with Caputo fractional operator, Numer. Methods Part. Differ. Equ. 37 (2021) 131-151. https://doi.org/10.1002/num.22522
  32. K.M. Owolabi, J.F. Gomez-Aguilar, G. Fernandez Anaya, J.E. Lavin-Delgado, E. Hernandez-Castillo, Modelling of chaotic processes with Caputo fractional order derivative, MDPI Entropy 22 (2020) 1027 1-102716. https://doi.org/10.3390/e22091027
  33. K.M. Owolabi, B. Karaagac, Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system, Chaos, Solit. Fractals 141 (2020) 110302 1-15. https://doi.org/10.1016/j.chaos.2020.110302
  34. P. Agarwal, J.J. Nieto, Some fractional integral formulas for the Mittag-Leffler type function with four parameters, Open Math. 13 (2015) 537-546.
  35. P. Agarwal, J. Choi, S. Jain, M. Mehdi Rashidi, Certain integrals associated with generalized Mittag-Leffler function, in: Communications of the Korean Mathematical Society 32, 2017, pp. 1 29-38. https://doi.org/10.4134/CKMS.c150247
  36. K.J. Moody, I.D. Hutcheon, P.M. Grant, Nuclear Forensic Analysis, second ed., Taylor & Francis Group, 2005.
  37. R. Dreher, Modified Bateman solutions for identical eigenvalues, Ann. Nucl. Energy 53 (2013) 427-438. https://doi.org/10.1016/j.anucene.2012.06.019