DOI QR코드

DOI QR Code

Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy

  • Jiang, Yanbo (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Xin, Yong (Science and Technology on Reactor System Design Technology Laboratory) ;
  • Liu, Wenbo (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Sun, Zhipeng (Science and Technology on Reactor System Design Technology Laboratory) ;
  • Chen, Ping (Science and Technology on Reactor System Design Technology Laboratory) ;
  • Sun, Dan (Science and Technology on Reactor System Design Technology Laboratory) ;
  • Zhou, Mingyang (Science and Technology on Reactor System Design Technology Laboratory) ;
  • Liu, Xiao (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics) ;
  • Yun, Di (Department of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2021.01.25
  • Accepted : 2021.07.19
  • Published : 2022.01.25

Abstract

In the present work, a phase-field model was developed to investigate the influence of recrystallization on bubble evolution during irradiation. Considering the interaction between bubbles and grain boundary (GB), a set of modified Cahn-Hilliard and Allen-Cahn equations, with field variables and order parameters evolving in space and time, was used in this model. Both the kinetics of recrystallization characterized in experiments and point defects generated during cascade were incorporated in the model. The bubble evolution in recrystallized polycrystalline of U-Mo alloy was also investigated. The simulation results showed that GB with a large area fraction generated by recrystallization accelerates the formation and growth of bubbles. With the formation of new grains, gas atoms are swept and collected by GBs. The simulation results of bubble size and distribution are consistent with the experimental results.

Keywords

Acknowledgement

Financial support provided by the NSAF Joint Fund (No. U1830124), National Natural Science Foundation of China (No. 11675154, 11675126, 11705137) and China Postdoctoral Science Foundation (No. 2019M663738) is acknowledged.

References

  1. J.L. Snelgrove, G.L. Hofman, M.K. Meyer, Development of very-high-density low-enriched-uranium fuels, Nucl. Eng. Des. 178 (1997) 119-126, https://doi.org/10.1016/s0029-5493(97)00217-3.
  2. D.D. Keiser, S.L. Hayes, M.L. Meyer, High-density, low-enriched uranium fuel for nuclear research reactors, JOM (J. Occup. Med.) 55 (2003) 55-58, https://doi.org/10.1007/s11837-003-0031-0.
  3. S. Van den Berghe, P. Lemoine, Review of 15 years of high-density low-enriched UMo dispersion fuel development for research reactors in Europe, Nucl. Eng. Technol. 46 (2014) 125-146, https://doi.org/10.5516/NET.07.2014.703.
  4. M.K. Meyer, G.L. Hofman, S.L. Hayes, Low-temperature irradiation behavior of Uranium-molybdenum alloy dispersion fuel, J. Nucl. Mater. 304 (2002) 221-236, https://doi.org/10.1016/S0022-3115(02)00850-4.
  5. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements: Solutions to Problems, California Univ, Berkeley (USA), 1976. Dept. of Nuclear Engineering.
  6. G.L. Hofman, G.L. Copeland, J.E. Sanecki, Microscopic investigation into the irradiation behavior of U3O8-Al dispersion fuel, Nucl. Technol. 72 (1986) 338-344, https://doi.org/10.13182/NT86-A33772.
  7. R.M. Berman, Fission fragment distribution in irradiated UO2,, Nucl. Sci. Eng. 16 (1963) 315-328, https://doi.org/10.13182/NSE63-A26534.
  8. J. Gan, D.D. Keiser, B.D. Miller, TEM characterization of U-7Mo/Al-2Si dispersion fuel irradiated to intermediate and high fission densities, J. Nucl. Mater. 424 (2012) 43-50, https://doi.org/10.1016/j.jnucmat.2012.02.001.
  9. Y.S. Kim, G.L. Hofman, Fission product induced swelling of U-Mo alloy fuel, J. Nucl. Mater. 419 (2011) 291-301, https://doi.org/10.1016/j.jnucmat.2011.08.018.
  10. J. Spino, D. Baron, M. Coquerelle, High burn-up rim structure: evidences that xenon-depletion, pore formation and grain subdivision start at different local burn-ups, J. Nucl. Mater. 256 (1998) 189-196, https://doi.org/10.1016/S0022-3115(98)00060-9.
  11. S. Kashibe, K. Une, K. Nogita, Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6e83 GWd/t, J. Nucl. Mater. 206 (1993) 22-34, https://doi.org/10.1016/0022-3115(93)90229-R.
  12. H. Matzke, On the rim effect in high burnup UO2 LWR fuels, JNuM 189 (1992) 141-148, https://doi.org/10.1016/0022-3115(92)90428-N.
  13. K. Nogita, K. Une, Radiation-induced microstructural change in high burnup UO2 fuel pellets, Nucl. Instrum. Methods Phys. Res., Sect. B 91 (1994) 301-306, https://doi.org/10.1016/0168-583X(94)96235-9.
  14. V.V. Rondinella, T. Wiss, The high burn-up structure in nuclear fuel, Mater. Today 13 (2010) 24-32, https://doi.org/10.1016/S1369-7021(10)70221-2.
  15. J. Noirot, L. Desgranges, J. Lamontagne, Detailed characterizations of high burn-up structures in oxide fuels, J. Nucl. Mater. 372 (2008) 318-339, https://doi.org/10.1016/j.jnucmat.2007.04.037.
  16. J. Spino, K. Vennix, M. Coquerelle, Detailed characterisation of the rim microstructure in PWR fuels in the burn-up range 40-67 GWd/tM, J. Nucl. Mater. 231 (1996) 179-190, https://doi.org/10.1016/0022-3115(96)00374-1.
  17. S.Y. Hu, W. Setyawan, V.V. Joshi, Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels, J. Nucl. Mater. 490 (2017) 49-58, https://doi.org/10.1016/j.jnucmat.2017.04.016.
  18. H.X. Xiao, C.S. Long, X.F. Tian, Atomistic simulations of the small xenon bubble behavior in U-Mo alloy, Mater. Des. 74 (2015) 55-60, https://doi.org/10.1016/j.matdes.2015.02.005.
  19. J. Rest, A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels, J. Nucl. Mater. 326 (2004) 175-184, https://doi.org/10.1016/j.jnucmat.2004.01.009.
  20. J. Rest, Model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and Ue10Mo nuclear fuels, J. Nucl. Mater. 324 (2005) 226-232, https://doi.org/10.1016/j.jnucmat.2005.06.012.
  21. M.R. Tonks, D. Gaston, C. Permann, A coupling methodology for mesoscale-informed nuclear fuel performance codes, Nucl. Eng. Des. 240 (2010) 2877-2883, https://doi.org/10.1016/j.nucengdes.2010.06.005.
  22. A. Cheniour, M.R. Tonks, B. Gong, Development of a grain growth model for U3Si2 using experimental data, phase field simulation and molecular dynamics, J. Nucl. Mater. (2020) 152069, https://doi.org/10.1016/j.jnucmat.2020.152069.
  23. Z.G. Mei, L. Liang, Y.S. Kim, Grain growth in Ue7Mo alloy: a combined first-principles and phase field study, J. Nucl. Mater. 473 (2016) 300-308, https://doi.org/10.1016/j.jnucmat.2016.01.027.
  24. Y.B. Jiang, W.B. Liu, W.J. Li, Phase-field simulation of the interaction between intergranular voids and grain boundaries during radiation in UO2, Comput. Mater. Sci. (2020) 110176, https://doi.org/10.1016/j.commatsci.2020.110176.
  25. L. Liang, Z.G. Mei, Y.S. Kim, Three-dimensional phase-field simulations of intragranular gas bubble evolution in irradiated U-Mo fuel, Comput. Mater. Sci. 145 (2018) 86-95, https://doi.org/10.1016/j.commatsci.2017.12.061.
  26. P.C. Millett, A. El-Azab, D. Wolf, Phase-field simulation of irradiated metals: Part II: gas bubble kinetics, Comput. Mater. Sci. 50 (2011) 960-970, https://doi.org/10.1016/j.commatsci.2010.10.032.
  27. M.G. Abdoelatef, F. Badry, D. Schwen, Mesoscale modeling of high burn-up structure formation and evolution in UO2, JOM (J. Occup. Med.) 71 (2019) 4817-4828, https://doi.org/10.1007/s11837-019-03830-z.
  28. L. Liang, Y.S. Kim, Z.G. Mei, Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels, J. Nucl. Mater. 511 (2018) 438-445, https://doi.org/10.1016/j.jnucmat.2018.09.054.
  29. L. Liang, Z.G. Mei, A.M. Yacout, Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel, Comput. Mater. Sci. 138 (2017) 16-26, https://doi.org/10.1016/j.commatsci.2017.06.013.
  30. S. Hu, V. Joshi, C.A. Lavender, A rate-theoryephase-field model of irradiation-induced recrystallization in UMo nuclear fuels, JOM (J. Occup. Med.) 69 (2017) 2554-2562, https://doi.org/10.1007/s11837-017-2611-4.
  31. L.Q. Chen, Y. Wei, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics, Phys. Rev. B 50 (1994) 15752, https://doi.org/10.1103/PhysRevB.50.15752.
  32. Z. Xiao, Y. Wang, S. Hu, A quantitative phase-field model of gas bubble evolution in UO2, Comput. Mater. Sci. 184 (2020) 109867, https://doi.org/10.1016/j.commatsci.2020.109867.
  33. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258-267, https://doi.org/10.1063/1.1744102.
  34. Y. Wang, Z. Xiao, S. Hu, A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient, Comput. Mater. Sci. 183 (2020) 109817, https://doi.org/10.1016/j.commatsci.2020.109817.
  35. I. Steinbach, Phase-field model for microstructure evolution at the mesoscopic scale, Annu. Rev. Mater. Res. 43 (2013) 89-107, https://doi.org/10.1146/annurev-matsci-071312-121703.
  36. P.C. Millett, A. El-Azab, S. Rokkam, Phase-field simulation of irradiated metals: Part I: void kinetics, Comput. Mater. Sci. 50 (2011) 949-959, https://doi.org/10.1016/j.commatsci.2010.10.034.
  37. J. Rest, G.L. Hofman, Effect of recrystallization in high-burnup UO{sub 2} on gas release during RIA-type transients, 1994, https://doi.org/10.2172/432943.ANL/ET/PP-84776.
  38. N. Moelans, A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems, Acta Mater. 59 (2011) 1077-1086, https://doi.org/10.1016/j.actamat.2010.10.038.
  39. J. Rest, An analytical study of gas-bubble nucleation mechanisms in uranium-alloy nuclear fuel at high temperature, J. Nucl. Mater. 402 (2010) 179-185, https://doi.org/10.1016/j.jnucmat.2010.05.022.
  40. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, United State, 1976, https://doi.org/10.2172/7343826. TID-26711-P1.
  41. Z.G. Mei, L. Liang, A.M. Yacout, First-principles study of the surface properties of U-Mo system, Comput. Mater. Sci. 142 (2018) 355-360, https://doi.org/10.1016/j.commatsci.2017.10.033.
  42. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 1987. United States.
  43. S. Hu, A.M. Casella, C.A. Lavender, Assessment of effective thermal conductivity in U-Mo metallic fuels with distributed gas bubbles, J. Nucl. Mater. 462 (2015) 64-76, https://doi.org/10.1016/j.jnucmat.2015.03.039.
  44. N. Moelans, B. Blanpain, P. Wollants, Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems, Phys. Rev. B 78 (2008), 024113, https://doi.org/10.1103/PhysRevB.78.024113.
  45. Y.S. Kim, G.L. Hofman, J.S. Cheon, Recrystallization and fission-gas-bubble swelling of U-Mo fuel, J. Nucl. Mater. 436 (2013) 14-22, https://doi.org/10.1016/j.jnucmat.2013.01.291.
  46. P.C. Millett, M.R. Tonks, S.B. Biner, Phase-field simulation of intergranular bubble growth and percolation in biocrystals, J. Nucl. Mater. 425 (2012) 130-135, https://doi.org/10.1016/j.jnucmat.2011.07.034.
  47. J. Rest, The effect of irradiation-induced gas-atom re-solution on grain-boundary bubble growth, J. Nucl. Mater. 321 (2003) 305-312, https://doi.org/10.1016/S0022-3115(03)00303-9.
  48. Y.S. Kim, J.M. Park, K.H. Lee, In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al, J. Nucl. Mater. 454 (2014) 238-246, https://doi.org/10.1016/j.jnucmat.2014.08.005.