References
- J.K. Shultis, R.E. Faw, Radiation Shielding and Radiological Protection in Handbook of Nuclear Engineering, Springer, 2010.
- J.H. Hubbell, Review and history of photon cross section calculations, 13, Phys. Med. Biol. 51 (2006) 245, https://doi.org/10.1088/0031-9155/51/13/R15.
- H.O. Tekin, P.S. Vishwanath, T. Manici, E.E. Altunsoy, Validation of MCNPX with experimental results of mass attenuation coefficients for cement, gypsum and mixture, Journal of Radiation Protection and Research 42 (3) (2017) 154-157. https://doi.org/10.14407/jrpr.2017.42.3.154.
- V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation, Vacuum 119 (2015) 284-288, https://doi.org/10.1016/j.vacuum.2015.06.006.
- M. Berger, XCOM: Photon Cross Sections Database, 2010, https://doi.org/10.2172/6016002.
- O. Klein, Y. Nishina, Uber die Streuung von Strahlung durch freielektronen nach der neuen relativistischen quantendynamik von Dirac, Z. Phys. 52 (1928) 853-868.
- J. Hamilton, I. Overbo, I, B. Tromborg, Coulomb corrections in non-relativistic scattering, Nucl. Phys. B 60 (1973) 443-477. https://doi.org/10.1016/0550-3213(73)90193-4
- R.H. Pratt, P.M. Bergstrom Jr., L. Kissel, New Relativistic S-Matrix Results for Scattering beyond the Usual Anomalous Factors/beyond Impulse Approximation. No. UCRL-JC-114583, Lawrence Livermore National Lab., CA (United States), 1993. CONF-9208186-5.
- H.B. Kavanoz, O. Akcali, O. Toker, B. Bilmez, M. Caglar, O. Icelli, O, A novel comprehensive utilization of vanadium slag/epoxy resin/antimony trioxide ternary composite as gamma ray shielding material by MCNP 6.2 and BXCOM, Radiat. Phys. Chem. 165 (2019) 108446, https://doi.org/10.1016/j.radphyschem.2019.108446.
- S. Alp, T. Ozkan, Modelling of multi-objective transshipment problem with fuzzy goal programming, International Journal of Transportation 6 (2018) 9-20, https://doi.org/10.14257/ijt.2018.6.2.02.
- F. Rosenblatt, Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms, Cornell Aeronautical Lab Inc. Buffalo, NY, 1961.
- A.S. Lapedes, R.M. Farber, How Neural Nets Work. Neural Information Processing Systems, 1988, pp. 442-456.
- A.G. Bakirtzis, J.B. Theocharis, S.J. Kiartzis, K.J. Satsios, Short term load forecasting using fuzzy neural networks, IEEE Trans. Power Syst. 10 (3) (1995) 1518-1524. https://doi.org/10.1109/59.466494
- G. Zhang, B.E. Patuwo, M.Y. Hu, Forecasting with artificial neural networks: the state of the art, Int. J. Forecast. 14 (1) (1998) 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7
- C.M. Bishop, Neural Networks for Pattern Recognition, Oxford university press, 1995.
- J.C.F. Pujol, J.M.A. Pinto, A neural network approach to fatigue life prediction, Int. J. Fatig. 33 (3) (2011) 313-322. https://doi.org/10.1016/j.ijfatigue.2010.09.003
- I. Akkurt, C. Basyigit, S. Kilincarslan, A. Beycioglu, Prediction of photon attenuation coefficients of heavy concrete by fuzzy logic, J. Franklin Inst. 347 (9) (2010) 1589-1597. https://doi.org/10.1016/j.jfranklin.2010.06.002
- E.E. Zadeh, S.A.H. Feghhi, G.H. Roshani, A. Rezaei, Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis, The European Physical Journal Plus 131 (5) (2016) 167. https://doi.org/10.1140/epjp/i2016-16167-6
- N. Kucuk, Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: a comparative study, Radiat. Phys. Chem. 86 (2013) 10-22, https://doi.org/10.1016/j.radphyschem.2013.01.021.
- O. Gencel, The application of artificial neural networks technique to estimate mass attenuation coefficient of shielding barrier, 12, Int. J. Phys. Sci. 4 (2009) 743-751.
- A. Yadollahi, et al., Application of artificial neural network for predicting the optimal mixture of radiation shielding concrete, Prog. Nucl. Energy 89 (2016) 69-77, https://doi.org/10.1016/j.pnucene.2016.02.010.
- F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley & Sons, 2008.
- H. Bethe, W. Heitler, On the stopping of fast particles and on the creation of positive electrons, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 146 (856) (1934) 83-112, https://doi.org/10.1098/rspa.1934.0140.
- The Math Works, Inc. MATLAB. Version 2020b, The Math Works, Inc., 2020 computer software, https://www.mathworks.com.
- L.A. Zadeh, 3, Fuzzy sets, Information and control 8 (1965) 338-353, https://doi.org/10.1016/S0019-9958(65)90241-X.
- M. Sugeno, G.T. Kang, Structure identification of fuzzy model, Fuzzy Set Syst. 28 (1) (1988) 15-33, https://doi.org/10.1016/0165-0114(88)90113-3.
- L.J. Herrera, et al., Clustering-Based TSK neuro-fuzzy model for function approximation with interpretable sub-models, in: International Work-Conference on Artificial Neural Networks, Springer, Berlin, Heidelberg, 2005, https://doi.org/10.1007/11494669_49.
- J.J. More, The Levenberg-Marquardt algorithm: implementation and theory, in: Numerical Analysis, Springer, Berlin, Heidelberg, 1978, pp. 105-116.
- A. Davydenko, R. Fildes, Forecast error measures: critical review and practical recommendations, in: Business Forecasting: Practical Problems and Solutions, 34, Wiley, 2016.
- P. Goyal, P. Dollar, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, K. He, Accurate, Large Mini Batch Sgd: Training Image Net in 1 Hour, 2017 arXiv preprint arXiv:1706.02677, https://arxiv.org/abs/1706.02677v2.
- M.E. Medhat, Application of neural network for predicting photon attenuation through materials, 3-4, Radiat. Eff. Defect Solid 174 (2019) 171-181, https://doi.org/10.1080/10420150.2018.1547903.