DOI QR코드

DOI QR Code

Improvement of the subcooled boiling model using a new net vapor generation correlation inferred from artificial neural networks to predict the void fraction profiles in the vertical channel

  • Tae Beom Lee (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST) ) ;
  • Yong Hoon Jeong (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST) )
  • Received : 2022.03.31
  • Accepted : 2022.07.31
  • Published : 2022.12.25

Abstract

In the one-dimensional thermal-hydraulic (TH) codes, a subcooled boiling model to predict the void fraction profiles in a vertical channel consists of wall heat flux partitioning, the vapor condensation rate, the bubbly-to-slug flow transition criterion, and drift-flux models. Model performance has been investigated in detail, and necessary refinements have been incorporated into the Safety and Performance Analysis Code (SPACE) developed by the Korean nuclear industry for the safety analysis of pressurized water reactors (PWRs). The necessary refinements to models related to pumping factor, net vapor generation (NVG), vapor condensation, and drift-flux velocity were investigated in this study. In particular, a new NVG empirical correlation was also developed using artificial neural network (ANN) techniques. Simulations of a series of subcooled flow boiling experiments at pressures ranging from 1 to 149.9 bar were performed with the refined SPACE code, and reasonable agreement with the experimental data for the void fraction in the vertical channel was obtained. From the root-mean-square (RMS) error analysis for the predicted void fraction in the subcooled boiling region, the results with the refined SPACE code produce the best predictions for the entire pressure range compared to those using the original SPACE and RELAP5 codes.

Keywords

Acknowledgement

This work was financially supported by the grant of research and development project, Technology Development for Innovative Small Modular Reactor (Contract No.: L21S068000), funded by the KHNP (Korea Hydro and Nuclear Power Co., Ltd) in South Korea.

References

  1. H. Kantee, Application of RELAP5/MOD3.1 to ATWS Analysis of Control Rod Withdrawal from 1% Power Level, ADAMS (Agencywide Documents Acess and Management System, U.S. NRC, 2000, ML003734249. NUREG/IA-0180. 
  2. J.A. Boure, et al., Review of two-phase flow instability, Nucl. Eng. Des. 25 (1973) 165-192, https://doi.org/10.1016/0029-5493(73)90043-5. 
  3. A. Hainoun, et al., Modelling of void formation in the subcooled boiling regime in the ATHLET code to simulate flow instability for research reactors, Nucl. Eng. Des. 167 (1996) 175-191, https://doi.org/10.1016/S0029-5493(96)01233-2. 
  4. M.O. Kim, et al., Comparison of void fraction profiles in subcooled boiling of low pressure by 3D measurement and MARS calculation, in: Proceedings of the Korean Nuclear Society Conference, Korean Nuclear Society, 2002. 
  5. IAEA, Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants, 2009. IAEA-TECDOC-1624. 
  6. W. Kent, et al., NuScale Preliminary Loss-Of-Coolant Accident (LOCA) Thermal-Hydraulic and Neutronics Phenomena Identification and Ranking Table (PIRT)," NP-TR-0610-289-NP Rev 0, ADAMS No, 2010, ML101810013. 
  7. J. Zhang, et al., Application of the WCOBRA/TRAC best-estimate methodology to the AP600 large-break LOCA analysis, Nucl. Eng. Des. 186 (1998) 279-301, https://doi.org/10.1016/S0029-5493(98)00279-9. 
  8. J.G. Collier, et al., Convective Boiling and Condensation, McGraw-Hill, New York, 1981. 
  9. O. Zeitoun, Subcooled Flow Boiling and Condensation, McMaster University, Hamilton, Ontario, 1994. Ph.D. thesis. 
  10. P. Saha, N. Zuber, Point of net vapor generation and vapor void fraction in subcooled boiling, in: Proceedings Fifth International Heat Transfer Conference vol. 4, 1974, pp. 175-179. Tokyo. 
  11. U.S. NRC, TRACE-V5.0, Theory Manual-Field Equations, Solution Methods, and Physical Models, ADAMS No, 2007, ML120060218. 
  12. D. Bestion, The physical closure laws in the CATHARE code, Nucl. Eng. Des. 124 (1990) 229-245, https://doi.org/10.1016/0029-5493(90)90294-8. 
  13. W.R. Zackary, Evaluation Methodology for the Stability of the NuScale Power Module," TR-0516-49417-P-A, Revision 1, NuScale Power LLC, 2020. ADAMS No. ML20078Q094. 
  14. A.S. Devkin, A.S. Podosenov, RELAP5/MOD3 Subcooled Boiling Model Assessment, NUREG/IA-0025, U.S. NRC, Washington, D.C, 1998. 
  15. R.T. Lahey, A mechanistic subcooled boiling model, in: Proceedings of the 6th International Heat Transfer Conference, Toronto, Canada, vol. 1, 1978, pp. 293-297. 
  16. S. Hari, et al., Improvement of the subcooled boiling model for low-pressure conditions in thermal-hydraulic codes, Nucl. Eng. Des. 216 (1) (2002) 139-152, https://doi.org/10.1016/S0029-5493(02)00050-X. 
  17. B. Konꠑcar, et al., Modelling of low-pressure subcooled flow boiling using the RELAP5 code, Nucl. Eng. Des. 198 (3) (2003) 261-286, https://doi.org/10.1016/S0029-5493(02)00385-0. 
  18. Caihong Xu, A study on low-pressure subcooled flow boiling using RELAP5/MOD3.4, Energy Procedia 127 (2017) 387-397, https://doi.org/10.1016/j.egypro.2017.08.101. 
  19. T.W. Ha, et al., Improvement of the MARS subcooled boiling model for low-pressure, low-Pe flow conditions, Ann. Nucl. Energy 120 (2018) 236-245, https://doi.org/10.1016/j.anucene.2018.05.049. 
  20. K.S. Ha, et al., Improvements in predicting void fraction in subcooled boiling, Nucl. Technol. 150 (2005) 283-292, https://doi.org/10.13182/NT05-A3622. 
  21. O. Zeitoun, et al., Axial void fraction profile in low pressure subcooled flow boiling, Int. J. Heat Mass Tran. 40 (4) (1997) 869-879, https://doi.org/10.1016/0017-9310(96)00164-0. 
  22. S.J. Ha, et al., Development of the SPACE code for nuclear power plants, Nucl. Eng. Technol. 43 (2011) 45-62, https://doi.org/10.5516/NET.2011.43.1.045. 
  23. K.Y. Choi, et al., Development of a wall-to-fluid heat transfer package for the SPACE code, Nucl. Eng. Technol. 41 (9) (2009) 1143-1156, https://doi.org/10.5516/NET.2009.41.9.1143. 
  24. T.B. Lee, et al., Improvement of the SPACE Subcooled Boiling Model for the High Pressure and Low Flow Conditions, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2020. May 21-22. 
  25. H.C. Unal, Maximum bubble diameter, maximum bubble growth time and bubble growth rate, Int. J. Heat Mass Tran. 19 (1976) 643-649, https://doi.org/10.1016/0017-9310(76)90047-8. 
  26. R.W. Bowring, Physical Model, Based on Bubble Detachment, and Calculation of Steam Voidage in the Sub-cooled Region of a Heated Channel," OECD Halden Reactor Project Report HPR-10, Institute for Atomenergi, Halden, Norway, 1962. 
  27. M.Z. Podowski, Mechanistic Modeling of CHF in Forced-Convection Subcooled Boiling," KAPL-P-000162, KAPL Atomic Power Laboratory, 1997. 
  28. M.V.H. Del Valle, et al., Subcooled flow boiling at high heat flux, Int. J. Heat Mass Tran. 28 (10) (1985) 1907-1920, https://doi.org/10.1016/0017-9310(85)90213-3. 
  29. R. Cole, A photographic study of pool boiling in the region of the critical heat flux, AIChE J. 6 (4) (1960) 533-538, https://doi.org/10.1002/aic.690060405. 
  30. G. Kocamustafaogullari, Pressure dependence of bubble departure diameter for water, Int. Commun. Heat Mass Tran. 10 (1983) 501-509, https://doi.org/10.1016/0735-1933(83)90057-X. 
  31. J.T. Rogers, et al., The onset of significant void in up-flow boiling of water at low pressure and velocities, Int. J. Heat Mass Tran. 30 (11) (1987) 2247-2260, https://doi.org/10.1016/0017-9310(87)90218-3. 
  32. Y. Taitel, et al., Modeling flow pattern transitions for steady upward gas-liquid flow in vertical tubes, AIChE J. 26 (3) (1980) 345-354, https://doi.org/10.1002/aic.690260304. 
  33. K. Mishima, et al., Flow regime transition criteria for upward two-phase flow in vertical tubes, Int. J. Heat Mass Tran. 27 (5) (1984) 723-737, https://doi.org/10.1016/0017-9310(84)90142-X. 
  34. B. Chexal, G. Lellouche, et al., A void fraction correlation for generalized applications, Prog. Nucl. Energy 27 (4) (1992) 255-295, https://doi.org/10.1016/0149-1970(92)90007-P. 
  35. H. Goda, et al., Drift-flux model for downward two-phase flow, Int. J. Heat Mass Tran. 46 (2003) 4835-4844, https://doi.org/10.1016/S0017-9310(03)00309-0. 
  36. N. Zuber, J.A. Findlay, Average volumetric concentration in two-phase flow systems, J. Heat Tran. 87 (1965) 453-468, https://doi.org/10.1115/1.3689137. 
  37. P. Goel, et al., Bubble departure characteristics in a horizontal tube bundle under cross flow conditions, Int. J. Multiphas. Flow 100 (2018) 143-154, https://doi.org/10.1016/j.ijmultiphaseflow.2017.12.013. 
  38. T. Hibiki, et al., Interfacial area concentration in boiling bubbly flow systems, Chem. Eng. Sci. 61 (2006) 7979-7990, https://doi.org/10.1016/j.ces.2006.09.009. 
  39. C.S. Brooks, et al., Wall nucleation modeling in subcooled boiling flow, Int. J. Heat Mass Tran. 86 (2015) 183-196, https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.005. 
  40. R. Situ, et al., Bubble departure frequency in forced convective subcooled boiling flow, Int. J. Heat Mass Tran. 51 (2008) 6268-6282, https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.028. 
  41. J.C. Chen, A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow, vol. 5, I & EC Process Design and Development, 1966, pp. 322-327. 
  42. ISL, Inc, RELAP5/MOD3.3 Code Manual, Volume IV: Models and Correlations, U.S. NRC, 2016. NUREG/CR-5535/Rev P5-Vol IV. 
  43. B.J. Yun, et al., Characteristics of the local bubble parameters of a subcooled boiling flow in an annulus, Nucl. Eng. Des. 240 (2010) 2295-2303, https://doi.org/10.1016/j.nucengdes.2009.11.014. 
  44. S. Bae, et al., Preliminary Assessment of the Interfacial Source Terms in SPACE Code, Transactions of the Korean Nuclear Society Spring Meeting, Gyeongju, Korea, 2009. October 29-30. 
  45. S.N. Aksan, et al., Boil-off experiments with the PSI-NEPTUN facility: analysis and code assessment overview report, Nucl. Eng. Des. 143 (1993) 245-264, https://doi.org/10.1016/0029-5493(93)90227-Z. 
  46. E. Hisham, et al., Deep Learning Pipeline - Building a Deep Learning Model with TensorFlow, Apress Media LLC, New York, 2020. 
  47. E. Bibeau, Experimental Investigation of Subcooled Void Growth for Upflow and Downflow at Low Velocities and Low Pressure, British Columbia University, 1988. Thesis of Master Degree. 
  48. R. Evangelisti, et al., The void fraction in an annular channel at atmospheric pressure, Int. J. Heat Mass Tran. 12 (1969) 699-711, https://doi.org/10.1016/0017-9310(69)90004-0. 
  49. R. Ahmadi, et al., Experimental identification of the phenomenon triggering the net vapor generation in upward subcooled flow boiling of water at low pressure, Int. J. Heat Mass Tran. 55 (2012) 6067-6076, https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.020. 
  50. R. Ahmadi, et al., Visualization study on the mechanisms of net vapor generation in water subcooled flow boiling under moderate pressure conditions, Int. J. Heat Mass Tran. 70 (2014) 137-151, https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.073. 
  51. R. Ahmadi, et al., Influence of surface wettability on bubble behavior and void evolution in subcooled flow boiling, Int. J. Heat Mass Tran. 97 (2015) 114-125, https://doi.org/10.1016/j.ijthermalsci.2015.06.012. 
  52. Z. Edelman, et al., Void fraction distribution in low flow rate subcooled boiling, Nucl. Eng. Des. 66 (1981) 375-382, https://doi.org/10.1016/0029-5493(81)90167-9. 
  53. S.Z. Rouhani, Void Measurements in the Regions of Sub-cooled and Low-Quality Boiling, Part 1. Higher Mass Velocities, AB Atomenergi, 1966. No. AE-239. 
  54. S.Z. Rouhani, Void Measurements in the Regions of Sub-cooled and LowQuality Boiling, Part 1. Low Mass Velocities, AB Atomenergi, 1966. No. AE-238. 
  55. G.G. Bartolomey, et al., Experimental Investigation of Void Fraction at Sub-cooled Boiling Mode in Tubes, Teploenergetika, N3, 1982, pp. 20-22. 
  56. F.W. Staub, The void fraction in subcooled boiling-prediction of the initial point of net vapor generation, J. Heat Tran. 90 (1) (1968a) 151-157, https://doi.org/10.1115/1.3597446. 
  57. F.W. Staub, et al., Heat Transfer and Hydraulics; the Effects of Subcooled Voids", Final Report, 1968. NYO-3679-8. 
  58. J. Marchaterre, et al., Natural and Forced-Circulation Boiling Studies," ANL-5735, Argonne National Laboratory, 1960. 
  59. G. Maurer, et al., Bettis Technical Review - A Method of Predicting Steady-State Boiling Vapor Fractions in Reactor Coolant Channels, vol. 19, WAPD-BT-, Bettis, 1960. 
  60. R. Egen, et al., Vapor formation and behavior in boiling heat transfer, in: BMI-1163, Battelle Memorial Institute, 1957. 
  61. J. Foglia, et al., Boiling-water void distribution and slip ratio in heated channels, in: BMI-1517, Battelle Memorial Institute, 1961. 
  62. P. Griffith, et al., Void Volumes in Subcooled Boiling Systems, MIT, 1958. MIT Technical Report No. 12, ASME Paper No. 58-HT-19. 
  63. H. Kubota, et al., Dependence of vapor void fraction on fundamental bubble parameters in subcooled flow boiling, in: Proceedings of ICONE14 International Conference on Nuclear Engineering, 2006. July 17-20, Miami, Florida, USA. 
  64. J. Kennedy, et al., The onset of flow instability in uniformly heated horizontal microchannels, J. Heat Tran. 122 (2000) 118-125, https://doi.org/10.1115/1.521442. 
  65. M. Kureta, et al., Study on point of net vapor generation by neutron radiography in subcooled boiling flow along narrow rectangular channels with short heated length, Int. J. Heat Mass Tran. 46 (2003) 1171-1181, https://doi.org/10.1016/S0017-9310(02)00398-8. 
  66. K. Sekoguchi, et al., Prediction of void fraction in subcooled and low quality boiling regions, JSME 23 (183) (1980) 1475-1482, https://doi.org/10.1299/jsme1958.23.1475. 
  67. V. Chanturiya, et al., Experimental study of true void fraction when boiling subcooled water in vertical tubes, Teploenergetika 14 (2) (1967) 123-128. 
  68. M. Siman-Tov, et al., Static Flow Instability in Subcooled Flow Boiling in Parallel Channels, CONF-950445-2, ORNL, 1995. 
  69. R. Martin, et al., Measurement of the local void fraction at high pressure in a heating channel, Nucl. Sci. Eng. 48 (1972) 125-138, https://doi.org/10.13182/NSE72-A22466. 
  70. T. Okawa, et al., On the rise paths of single vapor bubbles after the departure from nucleation sites in subcooled upflow boiling, Int. J. Heat Mass Tran. 48 (2005) 4446-4459, https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.026. 
  71. G. Mayinger, Void Fraction and Pressure Drop in Subcooled Forced Convective Boiling with Refrigent 12, 7th EUROTHERM Seminar, Pisa, Italy, 1989. 
  72. G. Aurelien, Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-sorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media, 2019. 
  73. J.H. Anthony, Probability and Statistics for Engineers and Scientists, second ed., Thomson Learning Academic Resource Center, Duxbury, 2002. 
  74. L. Francisco, et al., Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramon y Cajal, Brain Res. Bull. 70 (2006) 391-405, https://doi.org/10.1016/j.brainresbull.2006.07.010. 
  75. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev. 65 (6) (1958) 386-408, https://doi.org/10.1037/h0042519. 
  76. Y. LeCun, et al., Deep learning, Review, Nature 521 (2015) 436-444, https://doi.org/10.1038/nature14539. 
  77. D.P. Kingma, et al., ADAM: a method for stochastic optimization, in: International Conference on Learning Representations (ICLR) Conference, 2015 arXiv: 1412.6980vol. 9. 
  78. S. Pramod, et al., Learn TensorFlow 2.0 - Implement Machine Learning and Deep Learning Models with Python, Apress Media LLC, New York, 2020. 
  79. L. Smith, A Disciplined Approach to Neural Network Hyper-Parameters: Part 1 - Learning Rate, Batch Size, Momentum, and Weight Decay, US Naval Research Laboratory, 2018. Technical Report 5510-026, arXiv : 1803.09820vols. 2, 2018. 
  80. Y.G. Lee, et al., Measurement of local two-phase flow parameters in an annulus under low-pressure subcooled boiling condition, Trans. Korean Soc. Mech. Eng. B 42 (12) (2018) 813-824.  https://doi.org/10.3795/KSME-B.2018.42.12.813
  81. H. Christensen, Power-to-void Transfer Functions," ANL-6385, Argonne National Laboratory, 1961. 
  82. J.K. Ferrell, et al., Low Pressure Steam-Water Flow in a Heated Vertical Channel. Final Report Volume II on A Study of Convection Boiling inside Channels, North Carolina State University, Raleigh, 1966 (Dept. of Chemical Engineering). 
  83. H. Umekawa, et al., The influence of the heating condition on the void fraction in a boiling channel, Phys. Procedia 69 (2015) 599-606, https://doi.org/10.1016/j.phpro.2015.07.085. 
  84. M. Shoukri, et al., Experiments on subcooled flow boiling and condensation in vertical annular channels, in: Phase-interface Phenomena in Multiphase Flow, Hemisphere Publishing Corporation, 1991, pp. 413-422. 
  85. B. Donevski, et al., Experimental Study of Subcooled Flow Boiling and Condensation in an Annular Channel, McMaster University, 1989. Report No. ME/89/TFRI. 
  86. G. Dimmick, et al., A Dynamic Model for Predicting Subcooled Void: Experimental Results and Model Development, EUROTHERM seminar, Pisa, Italy, 1990. 
  87. M. Bartel, et al., Interfacial area measurements in subcooled flow boiling, Nucl. Eng. Des. 210 (2001) 135-155, https://doi.org/10.1016/S0029-5493(01)00415-0. 
  88. D.H. Kang, et al., Two-phase Flow Regime Maps in Horizontal and Vertical Tubes, Transactions of the Korean Nuclear Society Spring Meeting, Pyeong Chang, Korea, 2007. October 25-26. 
  89. P.G. Kroeger, N. Zuber, An analysis of the effects of various parameters on the average void fractions in subcooled boiling, Int. J. Heat Mass Tran. 11 (2) (1968) 211-233, https://doi.org/10.1016/0017-9310(68)90151-8. 
  90. S.C. Lee, S.G. Bankoff, A comparison of predictive models for the onset of significant void at low pressures in forced-convection subcooled boiling, KSME Int. J. 12 (3) (1998) 504-513, https://doi.org/10.1007/BF02946366. 
  91. D. Maitra, et al., Vapour void fraction in subcooled flow boiling, Nuclear Engineering and Design 32 (1975) 20-28, https://doi.org/10.1016/0029-5493(75)90087-4. 
  92. A. Yadav, et al., Axial and radial void fraction measurements in convective boiling, Chem. Eng. Sci. 157 (10) (2017) 127-137, https://doi.org/10.1016/j.ces.2016.04.038. 
  93. D Jingyu, Investigation of bubble departure diameter in horizontal and vertical subcooled flow boiling, International Journal of Heat and Mass Transfer 127 (2018) 796-805, https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.019. 
  94. H Ivey J, Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling, International Journal of Heat and Mass Transfer 10 (1967) 1023-1040, https://doi.org/10.1016/0017-9310(67)90118-4. 
  95. R McLeod D, Investigation of subcooled void fraction growth in water under low pressure and low flowrate conditions, Carleton University, Ottawa, Ontario, 1986. 
  96. Giustini Giovanni, Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications-A Brief Review, Inventions 5 (3) (2020) 47-65, https://doi.org/10.3390/inventions5030047.