References
- C. Sunde, S. Avdic, I. Pazsit, Classification of two-phase flow regimes via image analysis and a neuro-wavelet approach, Progress in Nuclear Energy 46 (3-4) (2005) 348-358. https://doi.org/10.1016/j.pnucene.2005.03.015
- D. Ju, Z. Huang, X. Jia, X. Qiao, J. Xiao, Z. Huang, Macroscopic characteristics and internal flow pattern of dimethyl ether flash-boiling spray discharged through a vertical twin-orifice injector, Energy 114 (2016) 1240-1250. https://doi.org/10.1016/j.energy.2016.08.082
- J.E. Julia, Y. Liu, S. Paranjape, M. Ishii, Upward vertical two-phase flow local flow regime identification using neural network techniques, Nuclear Engineering and Design 238 (2008) 156-169. https://doi.org/10.1016/j.nucengdes.2007.05.005
- Z. Wang, B. Bai, Instrument of on line streamline recognition for multiple-phase stream of oil-gas and water, Process Automation Instrumentation 23 (5) (2002) 5-9.
- H. Chen, J. Xu, Z. Li, F. Xing, J. Xie, Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface, Applied Energy 112 (2013) 1283-1290. https://doi.org/10.1016/j.apenergy.2012.11.062
- S.G. Nnabuife, B. Kuang, Z.A. Rana, J. Whidborne, Classification of flow regimes using a neural network and a non-invasive ultrasonic sensor in an S-shaped pipeline-riser system, Chemical Engineering Journal Advances 9 (2022), 100215.
- Z. Lin, X. Liu, L. Lao, H. Liu, Prediction of Two-phase Flow Patterns in Upward Inclined Pipes via Deep Learning, Energy, 2020, 118541.
- P. Tang, J. Yang, J. Zheng, I. Wong, S. He, J. Ye, G. Ou, Failure analysis and prediction of pipes due to the interaction between multiphase flow and structure, Engineering Failure Analysis 16 (5) (2009) 1749-1756. https://doi.org/10.1016/j.engfailanal.2009.01.002
- K. Jiao, J. Bachman, Y. Zhou, J.W. Park, Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell, Applied Energy 115 (2014) 75-82. https://doi.org/10.1016/j.apenergy.2013.10.026
- Y. Liu, Z. Zhao, Y. Li, Real-time quality monitoring and diagnosis using convolutional neural network: an application to the pasting process of battery manufacturing, in: J. Hung, N. Yen, J.W. Chang (Eds.), Frontier Computing. FC 2019. Lecture Notes in Electrical Engineering, vol. 551, Springer, Singapore, 2020.
- T. Tambouratzis, I. Pazsit, A general regression artificial neural network for two-phase flow regime identification, Annals of Nuclear Energy 37 (5) (2010) 672-680. https://doi.org/10.1016/j.anucene.2010.02.004
- C.M. Salgado, C.M.N.A. Pereira, R. Schirru, L.E.B. Brandao, Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks, Progress in Nuclear Energy 52 (6) (2010) 555-562. https://doi.org/10.1016/j.pnucene.2010.02.001
- A.M.C. Chan, D. Bzovey, Measurement of mass flux in high temperature pressure steam-water two-phase flow using a combination of Pitot tubes and a gamma densitometer, Nuclear Engineering and Design 122 (1990) 95-104. https://doi.org/10.1016/0029-5493(90)90199-8
- L. Hernandez, J.E. Julia, S. Chiva, S. Paranjape, M. Ishii, Fast classification of two-phase flow regimes based on conductivity signals and artificial neural networks, Measurement Science and Technology 17 (2006) 1511-1521. https://doi.org/10.1088/0957-0233/17/6/032
- Z. Yang, H. Ji, Z. Huang, B. Wang, Application of convolution neural network to flow pattern identification of gas-liquid two-phase flow in small-size pipe, Proceedings of 2017 Chinese Automation Congress (CAC) (2017) 20-22. Jinan,China, October.
- C. Shen, Q. Zheng, M. Shang, L. Zha, Y. Su, Using deep learning to recognize liquid-liquid flow patterns in microchannels, AIChE Journal 66 (2020), e16260, 2020.
- A.M. Quintino, D.L.L.N. da Rocha, R.F. Junior, O.M.H. Rodriguez, Flow pattern transition in pipes using data-driven and physics-informed machine learning, Journal of Fluids Engineering 143 (2021), 031401.
- Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based Learning Applied to Document Recognition, Porceedings of the IEEE, USA, 1998, pp. 2278-2324.
- M. Du, H. Yin, X. Chen, X. Wang, Oil-in-water two-phase flow pattern identification from experimental snapshots using convolutional neural network, IEEE Access 7 (2019) 6219-6225. https://doi.org/10.1109/ACCESS.2018.2888733
- J. Zhao, F. Dong, C. Tan, Fast flow regime recognition method of gas/water two-phase flow based on extreme learning machine, IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (2013) 1807-1811.
- T. Xie, S.M. Ghiaasiaan, S. Karrila, Flow regime identification in gas/liquid/pulp fiber slurry flows based on pressure fluctuations using artificial neural networks, Industrial & Engineering Chemistry Research 42 (26) (2003) 7017-7024. https://doi.org/10.1021/ie0304199
- D. Xie, Z. Huang, H. Ji, H. Li, An online flow pattern identification system for gas-oil two-phase flow using electrical capacitance tomography, IEEE Transactions on Instrumentation and Measurement 55 (5) (2006) 1833-1838. https://doi.org/10.1109/TIM.2006.881558
- S.G. Nnabuife, B. Kuang, J.F. Whidborne, Z. Rana, Non-intrusive classification of gas-liquid flow regimes in an S-shaped pipeline riser using a Doppler ultrasonic sensor and deep neural networks, Chemical Engineering Journal 403 (2021), 126401.
- B. Kuang, S.G. Nnabuife, S. Sun, J.F. Whidborne, Z.A. Rana, Gas-liquid flow regimes identification using non-intrusive Doppler ultrasonic sensor and convolutional recurrent neural networks in an s-shaped riser, Digital Chemical Engineering 2 (2022), 100012.
- F. Chiarello, P. Belingheri, G. Fantoni, Data science for engineering design: state of the art and future directions, Computers in Industry 129 (2021), 103447.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, CoRR abs/1409 (2014) 4842.
- K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, Proceeding of International Conference on Learning Representations (ICLR2015), 2015.
- K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, European Conference on Computer Vision (ECCV) (2016) 630-645, 2016.
- R. Yamashita, M. Nishio, R.K.G. Do, K. Togashi, Convolutional neural networks: an overview and application in radiology, Insights into Imaging 9 (2018) 611-629. https://doi.org/10.1007/s13244-018-0639-9
- Y. Kim, Convolutional neural networks for sentence classification, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, 2014.
- M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional neural networks, European conference on computer vision (ECCV) 2014, I, LNCS 8689 (2014) 818-833.
- J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Gai, T. Chen, Recent advances in convolutional neural networks, Pattern Recognition 77 (2018) 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
- H. Wu, Q. Huang, D. Wang, L. Gao, A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals, Journal of Electromyography and Kinesiology 42 (2018) 136-142. https://doi.org/10.1016/j.jelekin.2018.07.005
- A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA 2 (2012) 1097-1105.
- Q. Li, W. Cai, X. Wang, Y. Zhou, D.D. Feng, M. Chen, Medical Image Classification with Convolutional Neural Network, 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 2014, pp. 844-848.
- X. Lei, H. Pan, X. Huang, A dilated CNN model for image classification, IEEE Access 7 (2019) 124087-124095. https://doi.org/10.1109/ACCESS.2019.2927169
- S. Lu, Z. Lu, Y.D. Zhang, Pathological brain detection based on AlexNet and transfer learning, Journal of Computational Science 30 (2018) 41-47.
- J. Llamas, P.M. Lerones, R. Medina, E. Zalama, J. Gomez-Garcia-Bermejo, Classification of architectural heritage images using deep learning techniques, Applied Sciences 7 (10) (2017) 992.
- B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 2921-2929.
- F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, SqueezeNet: AlexNet-level accuracy with 50 × fewer parameters and <0.5 MB model size, 2016. https://arxiv.org/pdf/1602.07360.pdf.
- W. Sun, Z. Zhang, J. Huang, RobNet: real-time road-object 3D point cloud segmentation based on SqueezeNet and cyclic CRF, Soft Computing 24 (2020) 5805-5818. https://doi.org/10.1007/s00500-019-04355-y
- C. Xia, Z. Pan, Z. Fei, S. Zhang, H. Li, Vision based defects detection for Keyhole TIG welding using deep learning with visual explanation, Journal of Manufacturing Processes 56 (2020) 845-855. https://doi.org/10.1016/j.jmapro.2020.05.033
- C. Gonzalez-Val, A. Pallas, V. Panadeiro, et al., A convolutional approach to quality monitoring for laser manufacturing, Journal of Intelligent Manufacturing 31 (2020) 789-795. https://doi.org/10.1007/s10845-019-01495-8
- O. Russakovsky, J. Deng, H. Su, et al., ImageNet large scale visual recognition challenge, International Journal of Computer Vision 115 (2015) 211-252. https://doi.org/10.1007/s11263-015-0816-y
- I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and momentum in deep learning, Proceedings of the 30th International Conference on Machine Learning, PMLR 28 (3) (2013) 1139-1147.
- H. Chu, X. Liao, P. Dong, Z. Chen, X. Zhao, J. Zou, An automatic classification method of well testing plot based on convolutional neural network (CNN), Energies 12 (2019) 2846.
- A.J. Ghajar, Two-Phase Gas-Liquid Flow in Pipes with Different Orientations, Springer International Publishing, Cham, Switzerland, 2020.
- Y. Bengio, Y. Grandvalet, No unbiased estimator of the variance of K-fold cross-validation, Journal of Machine Learning Research 5 (2004) 1089-1105.
- H. Xu, T. Tang, B. Zhang, Y. Liu, Identification of two-phase flow regime in the energy industry based on modified convolutional neural network, Progress in Nuclear Energy 147 (2022), 104191.
- T. Lundstrom, J. Baqersad, C. Niezrecki, Monitoring the dynamics of a helicopter main rotor with high-speed stereophotogrammetry, Experimental Techniques 40 (2016) 907-919. https://doi.org/10.1007/s40799-016-0092-y
- M. Al-Naser, M. Elshafei, A. Al-Sarkhi, Artificial neural network application for multiphase flow patterns detection: a new approach, Journal of Petroleum Science and Engineering 145 (2016) 548-564. https://doi.org/10.1016/j.petrol.2016.06.029