DOI QR코드

DOI QR Code

Development of a diverging collimator for environmental radiation monitoring in the industrial fields

  • Dong-Hee Han (Department of Medical Health Science, Kangwon National University) ;
  • Seung-Jae Lee (Department of Radiological Science, Dongseo University) ;
  • Jang-Oh Kim (Health and Medical Education Research Institute, Kangwon National University) ;
  • Da-Eun Kwon (Department of Medical Health Science, Kangwon National University) ;
  • Hak-Jae Lee (ARALE Laboratory Co., Ltd.) ;
  • Cheol-Ha Baek (Department of Medical Health Science, Kangwon National University)
  • 투고 : 2022.06.29
  • 심사 : 2022.08.08
  • 발행 : 2022.12.25

초록

Environmental radiation monitoring is required to protect from the effects of radiation in industrial fields such as nuclear power plant (NPP) monitoring, and various gamma camera systems are being developed. The purpose of this study is to optimize parameters of a diverging collimator composed of pure tungsten for compactness and lightness through Monte Carlo simulation. We conducted the performance evaluation based on spatial resolution and signal-to-noise ratio for point source and obtained gamma images and profiles. As a result, optimization was determined at a collimator height of 60.0 mm, a hole size of 1.5 mm, and a septal thickness of 1.0 mm. Also, the full-width-at-half-maximum was 3.5 mm and the signal-to-noise ratio was 53.5. This study proposes a compact 45° diverging collimator structure that can quickly and accurately identify the location of the source for radiation monitoring.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2020R1C1C1004584).

참고문헌

  1. International atomic energy agency, PRIS homepage, http://pris.iaea.org/PRIS/home.aspx. 
  2. Y.C. Lai, S. Smith, Metaheuristic minimum dose path planning for nuclear power plant decommissioning, Ann. Nucl. Energy 166 (2022), 108800. 
  3. S.R. Lin, H.W. Chou, J.J. Chen, International case survey and literature review of maintenance strategy for decommissioning nuclear power plant during transition period, Int. J. Press. Vessel. Pip. 198 (2022), 104654. 
  4. K. Inoue, M. Arai, M. Fujisawa, K. Saito, M. Fukushi, Detailed distribution map of absorbed dose rate in air in tokatsu area of Chiba prefecture, Japan, Constructed by car-borne survey 4 Years after the Fukushima Daiichi nuclear power plant accident, PLoS One 12 (2017). 
  5. V. Mubayi, R. Youngblood, Reevaluating the current U.S. Nuclear regulatory commission's safety goals, Nucl. Technol. 207 (2021) 406-412.  https://doi.org/10.1080/00295450.2020.1775452
  6. S.H. Jung, K. Kim, W.S. Jang, H.K. Jeong, B.J. Kwon, S.U. Kuh, S.H. You, H.J. Choi, K.B. Kim, Development of a direction-sensitive gamma-ray monitoring system using a gamma camera with a dual-sided collimator: a Monte Carlo study, Appl. Radiat. Isot. 178 (2021), 109937. 
  7. D.H. Han, J.H. Won, S.J. Lee, H.J. Lee, C.H. Baek, Optimization using Monte Carlo simulations of the thickness of a variable collimator for radiation monitoring, J. Korean Phys. Soc. 78 (2021) 627-633.  https://doi.org/10.1007/s40042-021-00080-8
  8. M.I. Ahmad, M.H. Mohd, R. Nordin, F. Mohamed, A. Abu-Samah, N.F. Abdullah, Ionizing radiation monitoring technology at the verge of internet of things, Sensors 21 (2021) 1-29.  https://doi.org/10.1109/JSEN.2020.3039123
  9. S. Widodo, A. Abimanyu, R. Apribra, Development of drone mounted aerial gamma monitoring system for environmental radionuclide surveillance in BATAN, J. Phys. Conf. Ser. 1436 (2020), 012126. 
  10. S.D. Metzler, J.E. Bowsher, M.F. Smith, R.J. Jaszczak, Analytic determination of pinhole collimator sensitivity with penetration, IEEE Trans. Med. Imaging 20 (2001) 730-741.  https://doi.org/10.1109/42.938241
  11. H. Il Kim, C.H. Baek, S. Jung An, S.W. Kwak, Y. Hyun Chung, Gamma camera with a two-layer diverging-slat collimator for radioisotope monitoring, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 698 (2013) 90-93.  https://doi.org/10.1016/j.nima.2012.09.049
  12. H. Cha, S. Leem, K. Cho, C. Kang, S. Bae, B. Yu, J. Yeom, H. Lee, K. Lee, Simulation study on the effect of constant hole length of curved diverging collimators for radiation monitoring systems, IEEE Trans. Nucl. Sci. 68 (2021) 1135-1143.  https://doi.org/10.1109/TNS.2021.3074532
  13. J.H. Won, D.H. Han, S.J. Lee, C.H. Baek, Development of a gamma camera with a diverging collimator using DMLS 3D printing, J. Magn. 25 (2020) 606-613.  https://doi.org/10.4283/JMAG.2020.25.4.606
  14. S.R. Cherry, J.A. Sorenson, M.E. Phelps, Physics in Nuclear Medicine, Elsevier, Amsterdam, The Netherlands, 2012. 
  15. K. Van Audenhaege, R. Van Holen, S. Vandenberghe, C. Vanhove, S.D. Metzler, S.C. Moore, Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging, Med. Phys. 42 (2015) 4796-4813.  https://doi.org/10.1118/1.4927061
  16. V. Bom, M. Goorden, F. Beekman, Comparison of pinhole collimator materials based on sensitivity equivalence, Phys. Med. Biol. 56 (2011) 3199-3214.  https://doi.org/10.1088/0031-9155/56/11/003
  17. Y.J. Lee, D.H. Kim, H.J. Kim, The effect of high-resolution parallel-hole collimator materials with a pixelated semiconductor SPECT system at equivalent sensitivities: Monte Carlo simulation studies, J. Korean Phys. Soc. 64 (2014) 1055-1062.  https://doi.org/10.3938/jkps.64.1055
  18. M. Georgiou, S. David, Development of a SiPM based gamma-ray imager using a Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillator array, in: 2013 IEEE NSS/MIC, 2013, pp. 1-3.