DOI QR코드

DOI QR Code

Radiation stability and radiolysis mechanism of hydroxyurea in HNO3 solution: Alpha, beta, and gamma irradiations

  • Yilin Qin (Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Wei Liao (Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Tu Lan (Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Fengzhen Li (Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Feize Li (Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Jijun Yang (Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Jiali Liao (Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Yuanyou Yang (Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Ning Liu (Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
  • Received : 2022.05.26
  • Accepted : 2022.07.30
  • Published : 2022.12.25

Abstract

Hydroxyurea (HU) is a novel salt-free reductant used potentially for the separation of U/Pu in the advanced PUREX process. In this work, the radiation stability of HU were systematically investigated in solution by examining the effects of the type of rays (α, β, and γ irradiations), the absorbed dose (10-50 kGy), and the HNO3 concentration (0-3 mol L-1). The influence degree on HU radiolysis rates followed the order of the absorbed dose > the ray type > the HNO3 concentration, but the latter two had moderate effects on HU radiolysis products where NH4+ and NO2- were found to be the most abundant ones, suggesting that the differences of α, β, and γ rays should be considered in the study of irradiation effects. The radiolysis mechanism was explored using density functional theory (DFT) calculations, and it proposed the dominant radiolysis paths of HU, indicating that the radiolysis of HU was mainly a free radical reaction among ·H, eaq-, H2O, intermediates, and the radiolytic free radical fragments of HU. The results reported here provide valuable insights into the mechanistic understanding of HU radiolysis under α, β, and γ irradiations and reliable data support for the application of HU in the reprocessing of spent fuel.

Keywords

Acknowledgement

Financial support from the National Natural Science Foundation of China (Grant No. 21876122), the State Administration of Science, Technology, and Industry for National Defense (PRC) for the Spent Fuel Reprocessing Project, and the Fundamental Research Funds for the Central Universities is gratefully acknowledged.

References

  1. K.L. Nash, C. Madic, J.N. Mathur, J. Lacquement, The Chemistry of the Actinide and Transactinide Elements, Actinide Separation Science and Technology, Springer Netherlands, Berlin, 2006, 2622-2798.
  2. G.A. Ye, Review on the study and application of organic salt-free reagent in Purex process, At. Energy Sci. Technol. 38 (2004) 152-158. https://www.aest.org.cn/EN/10.7538/yzk.2004.38.02.0152.
  3. W.F. Zheng, L.M. Liu, Z.Y. Chang, Improvement of separation of Pu from U of Ucycle in Purex process by acetohydroxamic acid, At. Energy Sci. Technol. 34 (2000) 110-115. https://www.aest.org.cn/EN/10.7538/yzk.2000.34.02.0110.
  4. R.J. Taylor, I.S. Denniss, May. I.. Hydroxamic acids-novel reagents for Advanced Purex processes, in: Proceedings of Atalante 2000 International Conference, 2000. Atalante.
  5. J.H. Wang, X.J. Cao, C. Li, M.H. Wu, B.R. Bao, W.F. Zheng, H. He, S.D. Zhang, Effect of HNO3 on the γ radiolysis and radiolytic liquid products of N, N-dimethylhydroxylamine, Acta Phys. Chim. Sin. 31 (2015) 559-565, https://doi.org/10.3866/PKU.WHXB201501092.
  6. S.Y. Wang, J.H. Wang, C. Li, M.H. Wu, G. Xu, W.F. Zheng, H. He, Effect of monomethylhydrazine on γ-ray radiolysis and radiolytic by-products of DMHA in nitric acid, J. Radioanal. Nucl. Chem. 327 (2021) 259-267, https://doi.org/10.1007/s10967-020-07489-8.
  7. J.H. Wang, P. Wang, C. Li, M.H. Wu, G. Xu, W.F. Zheng, H. He, Effect of nitrous acid on γ-ray radiolysis and radiolytic products of N, N-dimethylhydroxylamine, J. Radioanal. Nucl. Chem. 319 (2019) 759-765, https://doi.org/10.1007/s10967-019-06422-y.
  8. Y. Zhang, J.X. Hu, X.Y. Zhang, F.D. Wang, Hydroxylamine derivative in purex process. VI study on the partition of uranium/neptunium and uranium/plutonium with N, N-diethylhydroxylamine in the purification cycle of uranium contactor, Solvent Extr. Ion Exch. 19 (2001) 965-979. https://www.tandfonline.com/doi/abs/10.1081/SEI-100107613.
  9. J.H. Wang, C.C. Wang, S.X. Wang, M.H. Wu, G. Xu, W.F. Zheng, H. He, S.D. Zhang, γ-Ray damage of N, N-diethyl-hydroxylamine in water and its radiolytic products at lower dose, J. Radioanal. Nucl. Chem. 309 (2016) 503-510, https://doi.org/10.1007/s10967-015-4641-0.
  10. J.H. Wang, C. Li, Q. Li, M.H. Wu, W.F. Zheng, H. He, γ-Ray radiolysis of acetohydroxamic acid in HNO3 and its radiolytic product, Nucl. Sci. Tech. 29 (2018) 27, https://doi.org/10.1007/s41365-018-0360-x.
  11. Z.W. Zhu, J.Y. He, Z.F. Zhang, Y. Zhang, W.F. Zheng, Kinetics of the reduction of plutonium(IV) by hydroxyurea, a novel salt-free agent, J. Radioanal. Nucl. Chem. 260 (2004) 601-606, https://doi.org/10.1023/B:JRNC.0000028219.44504.cf.
  12. B.J. Mincher, G. Modolo, S.P. Mezyk, Review article: the effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis, Solvent Extr. Ion Exch. 27 (2009) 1-25, https://doi.org/10.1080/07366290802544767.
  13. B.J. Mincher, G. Modolo, S.P. Mezyk, Review article: the effects of radiation chemistry on solvent extraction: 2. a review of fission-product extraction, Solvent Extr. Ion Exch. 27 (2009) 331-353, https://doi.org/10.1080/07366290902821263.
  14. B.J. Mincher, G. Modolo, S.P. Mezyk, Review article: the effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction, Solvent Extr. Ion Exch. 27 (2009) 579-606, https://doi.org/10.1080/07366290903114098.
  15. B.J. Mincher, G. Modolo, S.P. Mezyk, Review: the effects of radiation chemistry on solvent extraction 4: separation of the trivalent actinides and considerations for radiation-resistant solvent systems, Solvent Extr. Ion Exch. 28 (2010) 415-436, https://doi.org/10.1080/07366299.2010.485548.
  16. M. Burton, An introduction to radiation chemistry, J. Chem. Educ. 28 (1951) 404-420, https://doi.org/10.1021/ED028P404.
  17. G.A. Poskrebyshev, P. Neta, R.E. Huie, Equilibrium constant of the reaction ·OH + HNO3⇆H2O + NO3. in aqueous solution, J. Geophys. Res. 106 (2001) 4995-5004, https://doi.org/10.1029/2000jd900702.
  18. C. Ekberg, E. Aneheim, A. Fermvik, G. Skarnemark, Using 211At as internal alpha radiolysis source allowing for simple detection of radiolysis products, Radiat. Phys. Chem. 79 (2010) 454-456, https://doi.org/10.1016/j.radphyschem.2009.10.003.
  19. D.R. Corson, K.R. Mackenzie, E. Segre, Astatine: the element of atomic number 85, Nature 159 (1947) 24, https://doi.org/10.1038/159024b0.
  20. M.R. Zalutsky, M. Pruszynski, Astatine-211: production and availability, Curr. Rad. 4 (2012) 177-185, https://doi.org/10.2174/1874471011104030177.
  21. C. Ekberg, H. Jensen, S.P. Mezyk, B.J. Mincher, G. Skarnemark, Extraction of 211At from nitric acid solutions into various organic solvents for use as an α-source for radiation chemistry studies, J. Radioanal. Nucl. Chem. 314 (2017) 235-239, https://doi.org/10.1007/s10967-017-5364-1.
  22. S.P. Mezyk, B.J. Mincher, C. Ekberg, G. Skarnemark, Alpha and gamma radiolysis of nuclear solvent extraction ligands used for An(III) and Ln(III) separations, J. Radioanal. Nucl. Chem. 296 (2013) 711-715, https://doi.org/10.1007/s10967-012-2036-z.
  23. Y. Wang, Y.S. Wan, Y.M. Cai, L.H. Yuan, W. Feng, N. Liu, A review of the alpha radiolysis of extractants for actinide lanthanide separation in spent nuclear fuel reprocessing, Radiochim. Acta 109 (2021) 603-623, https://doi.org/10.1515/ract-2021-1009.
  24. J.E. Milks, R.H. Janes, Separation and detection of cyanamide and its derivatives and determination of urea by paper chromatography, Anal. Chem. 28 (1956) 846-849, https://doi.org/10.1021/ac60113a019.
  25. E. Boyland, R. Nery, The colorimetric determination of N-hydroxyurethane and related compounds, Analyst 89 (1964) 520-528, https://doi.org/10.1039/AN9648900520.
  26. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Lzmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Lyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.
  27. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652, https://doi.org/10.1063/1.464913.
  28. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (2010), 154104, https://doi.org/10.1063/1.3382344.
  29. V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009) 6378-6396, https://doi.org/10.1021/jp810292n.
  30. V. Fiegel, C. Berthon, A. Costagliola, G. Blain, J. Vandenborre, J. Vermeulen, G. Saint-Louis, L. Guerin, T. Sauvage, M. Fattahi-Vanani, L. Venault, L. Berthon, Alpha radiolysis of DOTA ligand in aqueous solutions with helium ion beams, Radiat. Phys. Chem. 165 (2019), 108409, https://doi.org/10.1016/j.radphyschem.2019.108409.
  31. Y. Katsumura, P.Y. Jiang, R. Nagaishi, T. Oishi, K. Ishigure, Y. Yoshida, Pulse radiolysis study of aqueous nitric acid solutions. formation mechanism, yield, and reactivity of NO3 radical, J. Phys. Chem. A 95 (1991) 4435-4439, https://doi.org/10.1021/j100164a050.
  32. R.J. Gowland, G. Stedman, Kinetic and product studies on the decomposition of hydroxylamine in nitric acid, J. Inorg. Nucl. Chem. 43 (1981) 2859-2862, https://doi.org/10.1016/0022-1902(81)80631-8.
  33. J.R. Pembridge, G. Stedman, Kinetics, mechanism, and stoicheiometry of the oxidation of hydroxylamine by nitric acid, J. Chem. Soc. Dalton Trans. 11 (1979) 1657-1663, https://doi.org/10.1039/DT9790001657.
  34. F.T. Bonner, L.S. Dzelzkalns, J.A. Bonucci, Properties of nitroxyl as intermediate in the nitric oxide-hydroxylamine reaction and in trioxodinitrate decomposition, Inorg. Chem. 17 (1978) 2487-2494, https://doi.org/10.1021/ic50187a030.
  35. M.R. Bennett, G.M. Brown, L. Maya, F.A. Posey, Oxidation of hydroxylamine by nitrous and nitric acids, Inorg. Chem. 21 (1982) 2461-2468, https://doi.org/10.1021/ic00136a066.
  36. S.T. Xiao, G.A. Ye, Y.G. Ouyang, X.C. Liu, X.L. Zhu, Investigation on quantitative structure-activity relationships betweem hydroxylamine and its derivatives and reduction of Pu(IV), J. Nucl. Radiochem. 43 (2021) 50-56, https://doi.org/10.7538/hhx.2020.YX.2019056.
  37. N.K. Gour, S.S. Begum, R.C. Deka, Computational study on night-time reaction of 1, 1-Dichlorodimethylether (DCDME) CH3OCHCl2 with NO3 radical and the fortuity of alkoxy radical CH3OC(O)Cl2, Chem. Phys. Lett. 701 (2018) 157-164, https://doi.org/10.1016/J.CPLETT.2018.04.045.
  38. S. Inaba, Theoretical study of water cluster catalyzed decomposition of formic acid, J. Phys. Chem. 118 (2014) 3026-3038, https://doi.org/10.1021/jp5021406.
  39. R. Kazanjian, F.J. Miner, A.K. Brown, P.G. Hagan, J.W. Berry, Radiolysis of nitric acid solutions: LET effects, Trans. Faraday Soc. 66 (1970) 2192-2198, https://doi.org/10.1039/tf9706602192.
  40. J. Champion, A. Sabatie-Gogova, F. Bassal, T. Ayed, C. Alliot, N. Galland, G. Montavon, Investigation of astatine(III) hydrolyzed species: experiments and relativistic calculations, J. Phys. Chem. 117 (2013) 1983-1990, https://doi.org/10.1021/jp3099413.
  41. F. Guerard, C. Maingueneau, L. Liu, R. Eychenne, J.F. Gestin, G. Montavon, N. Galland, Advances in the chemistry of astatine and implications for the development of radiopharmaceuticals, Accounts Chem. Res. 54 (2021) 3264-3275, https://doi.org/10.1021/acs.accounts.1c00327.