DOI QR코드

DOI QR Code

Evaluation of TlBr semiconductor detector in gamma camera imaging: Monte Carlo simulation study

  • Youngjin Lee (Department of Radiological Science, Gachon University) ;
  • Chanrok Park (Department of Radiological Science, Eulji University)
  • 투고 : 2022.03.09
  • 심사 : 2022.07.26
  • 발행 : 2022.12.25

초록

Among the detector materials available at room temperature, thallium bromide (TlBr), which has a relatively high atomic number and density, is widely used for gamma camera imaging. This study aimed to verify the usefulness of TlBr through quantitative evaluation by modeling detectors of various compound types using Monte Carlo simulations. The Geant4 application for tomographic emission was used for simulation, and detectors based on cadmium zinc telluride and cadmium telluride materials were selected as a comparison group. A pixel-matched parallel-hole collimator with proven excellent performance was modeled, and phantoms used for quality control in nuclear medicine were used. The signal-to-noise ratio (SNR), contrast to noise ratio (CNR), sensitivity, and full width at half maximum (FWHM) were used for quantitative analysis to evaluate the image quality. The SNR, CNR, sensitivity, and FWHM for the TlBr detector material were approximately 1.05, 1.04, 1.41, and 1.02 times, respectively, higher than those of the other detector materials. The SNR, CNR and sensitivity increased with increasing detector thickness, but the spatial resolution in terms of FWHM decreased. Thus, we demonstrated the feasibility and possibility of using the TlBr detector material in comparison with commercial detector materials.

키워드

참고문헌

  1. H.O. Anger, Scintillation camera, Review of Scientific Instruments 29 (1958) 27-33. https://doi.org/10.1063/1.1715998
  2. M.T. Madsen, Recent advances in SPECT imaging, Journal of Nuclear Medicine 48 (2007) 661-673. https://doi.org/10.2967/jnumed.106.032680
  3. R.J. Jaszczak, The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences, Physics in Medicine and Biology 51 (2006) R99-R115.
  4. K. Ogawa, Image distortion and correction in single photon emission CT, Annals of Nuclear Medicine 18 (2004) 171-185. https://doi.org/10.1007/BF02984998
  5. Y.J. Lee, D.H. Kim, H.J. Kim, The effect of high-resolution parallel hole collimator materials with a pixelated semiconductor SPECT system at equivalent sensitivities: Monte Carlo simulation studies, Journal of the Korean Physical Society 64 (2014) 1055-1062.
  6. T.E. Peterson, L.R. Furenlid, SPECT detectors: The Anger camera and beyond, Physics in Medicine and Biology 26 (2011) R145-R182.
  7. B.D. Milbrath, A.J. Peurrung, M. Bliss, W.J. Weber, Radiation detector materials: An overview, Journal of Materials Re-search 23 (2008) 2561-2581. https://doi.org/10.1557/JMR.2008.0319
  8. M. Khoshakhlagh, J.P. Islamian, S.M. Abedi, B. Mahmoudian, Development of scintillators in nuclear medicine, World journal of Nuclear Medicine 14 (2015) 156-159. https://doi.org/10.4103/1450-1147.163241
  9. I. Mroi, T. Takayama, N. Motomura, The CdTe detector module and its imaging performance, Annals of Nuclear Medicine 15 (2001) 487-494. https://doi.org/10.1007/BF02988500
  10. M. Rizzi, M. D'Aloia, B. Castagnolo, Semiconductor detectors and principles of radiation-mater interaction, Journal of Applied Sciences 10 (2010) 3141-3155. https://doi.org/10.3923/jas.2010.3141.3155
  11. S. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications, Sensors 9 (2009) 3491-3526. https://doi.org/10.3390/s90503491
  12. O. Limousin, New trends in CdTe and CdZnTe detectors for X-and gamma-ray applications, Nuclear Instruments and Methods in Physics Research Section A 504 (2003) 24-37. https://doi.org/10.1016/S0168-9002(03)00745-9
  13. R.N. Beck, L.T. Zimmer, D.B. Charleston, P.B. Hoffer, Aspects of imaging and counting in nuclear medicine using scintillation and semiconductor detectors, IEEE Transactions on Nuclear Science 3 (1972) 173-178.
  14. H.B. Barber, Applications of semiconductor detectors to nuclear medicine, Nuclear Instruments and Methods in Physics Research Section A 436 (1999) 102-110. https://doi.org/10.1016/S0168-9002(99)00605-1
  15. C. Scheiber, G.C. Giakos, Medical applications of CdTe and CdZnTe detectors, Nuclear Instruments and Methods in Physics Research Section A 458 (2001) 12-25. https://doi.org/10.1016/S0168-9002(00)01032-9
  16. P.J. Sellin, Recent advances in compound semiconductor radiation detectors, Nuclear Instruments and Methods in Physics Research Section A 513 (2003) 332-339. https://doi.org/10.1016/j.nima.2003.08.058
  17. J.J. Griesmer, B. Kline, J. Hrosholz, K. Parnham, D. Gagnon, in: Performance evaluation of a new CZT detector for nuclear meidicne: Soltice, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310), 2002, pp. 1050-1054.
  18. L.K. Jambi, J.E. Lees, S.L. Bugby, S. Tipper, M.S. Alqahtani, A.C. Perkins, Evaluation of XRI-UNO CdTe detector for nuclear medical imaging, Journal of Instrumentation 10 (2015), P06012.
  19. K. Erlandsson, K. Kacperski, D.V. Gramberg, B.F. Hutton, Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology, Physics in Medicine and Biology 54 (2009) 2635-2649. https://doi.org/10.1088/0031-9155/54/9/003
  20. Y.J. Lee, H.J. Ryu, H.M. Cho, S.W. Lee, Y.N. Choi, H.J. Kim, Optimization of a high-resolution collimator for a CdTe detector: Monte Carlo simulation studies, Journal of the Korean Physical Society 60 (2012) 862-868. https://doi.org/10.3938/jkps.60.862
  21. T. Takahashi, S. Watanabe, Recent progress in CdTe and CdZnTe detectors, IEEE Transactions on Nuclear Science 48 (2001) 950-959. https://doi.org/10.1109/23.958705
  22. K. Ogawa, N. Ohmura, H. Iida, K. Nakamura, T. Nakahara, A. Kubo, Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector, Annals of Nuclear Medicine 23 (2009) 763-770. https://doi.org/10.1007/s12149-009-0293-x
  23. L. Verger, M. Boitel, C. Gentet, R. Hamelin, C. Mestais, F. Mongellaz, J. Rustique, G. Sanchez, Characterization of CdTe and CdZnTe detectors for gamma-ray imaging applications, Nuclear Instruments and Methods in Physics Research Section A 458 (2001) 297-309. https://doi.org/10.1016/S0168-9002(00)00874-3
  24. S.J. Park, C.L. Lee, H.M. Cho, H.J. Kim, Ultra-high-resolution SPECT with CdTe for small-animal imaging applications: A Monte Carlo simulation study using a voxelized phantom, Journal of the Korean Physical Society 60 (2012) 1145-1149. https://doi.org/10.3938/jkps.60.1145
  25. K. Hitomi, T. Tada, S.Y. Kim, Y. Wu, T. Tanaka, T. Shoji, H. Yamazaki, K. Ishii, Recent development of TlBr Gamma-Ray detectors, IEEE Transactions on Nuclear Science 58 (2011) 1987-1991. https://doi.org/10.1109/TNS.2011.2123115
  26. D. Arino-Estrada, J. Du, H. Kim, L.J. Cirignano, K.S. Shah, S.R. Cherry, G.S. Mitchell, Development of TlBr detectors for PET imaging, Physics in Medicine and Biology 63 (2018), 13NT04.
  27. H. Kim, L. Cirignano, A. Churilov, G. Ciampi, W. Higgins, F. Olschner, K. Shah, Developing larger TlBr detec-tors-detector performance, IEEE Transactions on Nuclear Science 56 (2009) 819-823. https://doi.org/10.1109/TNS.2009.2014756
  28. K. Hitomi, T. Shoji, Y. Niizeki, A methods for suppressing polarization phenomena in TlBr detectors, Nuclear Instruments and Methods in Physics Research Section A 585 (2008) 102-104. https://doi.org/10.1016/j.nima.2007.11.012
  29. C.R. Park, S.H. Kang, Y. Lee, Similarity analysis of pixelated CdTe semiconductor gamma camera image using a quadrant bar phantom for nuclear medicine: Monte Carlo simulation simulation study, Nuclear Engineering and Technology 53 (2001) 1947-1954.
  30. J.S. Nabipour, A. Khorshidi, Spectroscopy and optimizing semiconductor detector data under X and g photons using im-age processing technique, Journal of Medical Imaging and Radiation Sciences 49 (2018) 194-200. https://doi.org/10.1016/j.jmir.2018.01.004
  31. S. Abbaspour, B. Mahmoudian, J.P. Islamian, Cadmium telluride semiconductor detector for improved spatial and energy resolution radioisotopic imaging, World Journal of Nuclear Medicine 16 (2017) 101-107. https://doi.org/10.4103/1450-1147.203079
  32. K. Hitomi, T. Shoji, K. Ishii, Advances in TlBr detector development, Journal of Crystal Growth 379 (2013) 93-98. https://doi.org/10.1016/j.jcrysgro.2013.03.002
  33. C.R. Park, S.H. Kang, Y. Lee, Optimization of mask size with median modified Wiener filter algorithm for gamma imag-es using pixelated semiconductor detector: Monte Carlo simulation study, Nuclear Instruments and Methods in Physics Research Section A 980 (2020), 164472.
  34. H.J. Ryu, Y.J. Lee, S.W. Lee, H.M. Cho, Y.N. Choi, H.J. Kim, Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector, Journal of the Korean Physical Society 61 (2012) 130-134. https://doi.org/10.3938/jkps.61.130
  35. Y.J. Lee, S.J. Park, S.W. Lee, D.H. Kim, Y.S. Kim, H.J. Kim, Comparison of Photon Counting and Conventional Scintillation Detectors in a Pinhole SPECT System for Small Animal Imaging: Monte Carlo Simulation Studies, Journal of the Korean Physical Society 62 (2013) 1317-1322. https://doi.org/10.3938/jkps.62.1317
  36. M. Kolstein, G. Arino, M. Chmeissani, G.D. Lorenzo, Simulation of charge transport in pixelated CdTe, Journal of Instrumentation 9 (2014), C12027.